Zihui Ren
commited on
Commit
•
578225f
1
Parent(s):
dc9fef8
upload models
Browse files- config.json +49 -0
- configuration_qwen.py +74 -0
- generation_config.json +12 -0
- merges.txt +0 -0
- modeling_qwen.py +1082 -0
- pytorch_model-00001-of-00002.bin +3 -0
- pytorch_model-00002-of-00002.bin +3 -0
- qwen_generation_utils.py +411 -0
- special_tokens_map.json +5 -0
- tokenizer_config.json +34 -0
- vocab.json +0 -0
config.json
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "model_repos/Qwen-7B-QAnything/",
|
3 |
+
"activation": "swiglu",
|
4 |
+
"apply_residual_connection_post_layernorm": false,
|
5 |
+
"architectures": [
|
6 |
+
"QWenLMHeadModel"
|
7 |
+
],
|
8 |
+
"attn_pdrop": 0.0,
|
9 |
+
"auto_map": {
|
10 |
+
"AutoConfig": "configuration_qwen.QWenConfig",
|
11 |
+
"AutoModel": "modeling_qwen.QWenLMHeadModel",
|
12 |
+
"AutoModelForCausalLM": "modeling_qwen.QWenLMHeadModel"
|
13 |
+
},
|
14 |
+
"bf16": false,
|
15 |
+
"bias_dropout_fusion": true,
|
16 |
+
"bos_token_id": 151643,
|
17 |
+
"embd_pdrop": 0.1,
|
18 |
+
"eos_token_id": 151643,
|
19 |
+
"ffn_hidden_size": 22016,
|
20 |
+
"fp16": false,
|
21 |
+
"initializer_range": 0.02,
|
22 |
+
"kv_channels": 128,
|
23 |
+
"layer_norm_epsilon": 1e-06,
|
24 |
+
"model_type": "qwen",
|
25 |
+
"n_embd": 4096,
|
26 |
+
"n_head": 32,
|
27 |
+
"n_inner": null,
|
28 |
+
"n_layer": 32,
|
29 |
+
"n_positions": 8192,
|
30 |
+
"no_bias": true,
|
31 |
+
"onnx_safe": null,
|
32 |
+
"padded_vocab_size": 151936,
|
33 |
+
"params_dtype": "torch.bfloat16",
|
34 |
+
"pos_emb": "rotary",
|
35 |
+
"resid_pdrop": 0.1,
|
36 |
+
"rotary_emb_base": 10000,
|
37 |
+
"rotary_pct": 1.0,
|
38 |
+
"scale_attn_weights": true,
|
39 |
+
"seq_length": 8192,
|
40 |
+
"tie_word_embeddings": false,
|
41 |
+
"tokenizer_type": "QWenTokenizer",
|
42 |
+
"torch_dtype": "bfloat16",
|
43 |
+
"transformers_version": "4.31.0",
|
44 |
+
"use_cache": true,
|
45 |
+
"use_dynamic_ntk": true,
|
46 |
+
"use_flash_attn": true,
|
47 |
+
"use_logn_attn": true,
|
48 |
+
"vocab_size": 151936
|
49 |
+
}
|
configuration_qwen.py
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Alibaba Cloud.
|
2 |
+
#
|
3 |
+
# This source code is licensed under the license found in the
|
4 |
+
# LICENSE file in the root directory of this source tree.
|
5 |
+
|
6 |
+
from transformers import PretrainedConfig
|
7 |
+
|
8 |
+
|
9 |
+
class QWenConfig(PretrainedConfig):
|
10 |
+
model_type = "qwen"
|
11 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
12 |
+
attribute_map = {
|
13 |
+
"hidden_size": "n_embd",
|
14 |
+
"num_attention_heads": "n_head",
|
15 |
+
"max_position_embeddings": "n_positions",
|
16 |
+
"num_hidden_layers": "n_layer",
|
17 |
+
}
|
18 |
+
|
19 |
+
def __init__(
|
20 |
+
self,
|
21 |
+
vocab_size=151851,
|
22 |
+
n_embd=4096,
|
23 |
+
n_layer=32,
|
24 |
+
n_head=32,
|
25 |
+
n_inner=None,
|
26 |
+
embd_pdrop=0.0,
|
27 |
+
attn_pdrop=0.0,
|
28 |
+
layer_norm_epsilon=1e-5,
|
29 |
+
initializer_range=0.02,
|
30 |
+
scale_attn_weights=True,
|
31 |
+
use_cache=True,
|
32 |
+
eos_token_id=151643,
|
33 |
+
apply_residual_connection_post_layernorm=False,
|
34 |
+
bf16=True,
|
35 |
+
kv_channels=128,
|
36 |
+
rotary_pct=1.0,
|
37 |
+
rotary_emb_base=10000,
|
38 |
+
use_dynamic_ntk=False,
|
39 |
+
use_logn_attn=False,
|
40 |
+
use_flash_attn=True,
|
41 |
+
ffn_hidden_size=22016,
|
42 |
+
no_bias=True,
|
43 |
+
tie_word_embeddings=False,
|
44 |
+
**kwargs,
|
45 |
+
):
|
46 |
+
self.eos_token_id = eos_token_id
|
47 |
+
super().__init__(
|
48 |
+
eos_token_id=eos_token_id, tie_word_embeddings=tie_word_embeddings, **kwargs
|
49 |
+
)
|
50 |
+
|
51 |
+
self.vocab_size = vocab_size
|
52 |
+
self.n_embd = n_embd
|
53 |
+
self.n_layer = n_layer
|
54 |
+
self.n_head = n_head
|
55 |
+
self.n_inner = n_inner
|
56 |
+
self.embd_pdrop = embd_pdrop
|
57 |
+
self.attn_pdrop = attn_pdrop
|
58 |
+
self.layer_norm_epsilon = layer_norm_epsilon
|
59 |
+
self.initializer_range = initializer_range
|
60 |
+
self.scale_attn_weights = scale_attn_weights
|
61 |
+
self.use_cache = use_cache
|
62 |
+
self.apply_residual_connection_post_layernorm = (
|
63 |
+
apply_residual_connection_post_layernorm
|
64 |
+
)
|
65 |
+
self.bf16 = bf16
|
66 |
+
self.kv_channels = kv_channels
|
67 |
+
self.rotary_pct = rotary_pct
|
68 |
+
self.rotary_emb_base = rotary_emb_base
|
69 |
+
self.use_dynamic_ntk = use_dynamic_ntk
|
70 |
+
self.use_logn_attn = use_logn_attn
|
71 |
+
self.use_flash_attn = use_flash_attn
|
72 |
+
self.ffn_hidden_size = ffn_hidden_size
|
73 |
+
self.no_bias = no_bias
|
74 |
+
self.tie_word_embeddings = tie_word_embeddings
|
generation_config.json
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"do_sample": true,
|
4 |
+
"temperature": 0.6,
|
5 |
+
"top_p": 0.8,
|
6 |
+
"top_k": 0,
|
7 |
+
"repetition_penalty": 1.05,
|
8 |
+
"max_new_tokens": 512,
|
9 |
+
"bos_token_id": 151643,
|
10 |
+
"eos_token_id": 151643,
|
11 |
+
"transformers_version": "4.31.0"
|
12 |
+
}
|
merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
modeling_qwen.py
ADDED
@@ -0,0 +1,1082 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Alibaba Cloud.
|
2 |
+
#
|
3 |
+
# This source code is licensed under the license found in the
|
4 |
+
# LICENSE file in the root directory of this source tree.
|
5 |
+
|
6 |
+
import importlib
|
7 |
+
import logging as log_print
|
8 |
+
import math
|
9 |
+
from typing import TYPE_CHECKING, Optional, Tuple, Union, Callable, List
|
10 |
+
|
11 |
+
import torch
|
12 |
+
import torch.nn.functional as F
|
13 |
+
import torch.utils.checkpoint
|
14 |
+
from torch.cuda.amp import autocast
|
15 |
+
|
16 |
+
from torch.nn import CrossEntropyLoss
|
17 |
+
from transformers import PreTrainedTokenizer, GenerationConfig, StoppingCriteriaList
|
18 |
+
from transformers.generation.logits_process import LogitsProcessorList
|
19 |
+
|
20 |
+
if TYPE_CHECKING:
|
21 |
+
from transformers.generation.streamers import BaseStreamer
|
22 |
+
from transformers.generation.utils import GenerateOutput
|
23 |
+
from transformers.modeling_outputs import (
|
24 |
+
BaseModelOutputWithPast,
|
25 |
+
CausalLMOutputWithPast,
|
26 |
+
)
|
27 |
+
from transformers.modeling_utils import PreTrainedModel
|
28 |
+
from transformers.utils import logging
|
29 |
+
|
30 |
+
try:
|
31 |
+
from einops import rearrange
|
32 |
+
except ImportError:
|
33 |
+
rearrange = None
|
34 |
+
from torch import nn
|
35 |
+
|
36 |
+
try:
|
37 |
+
from flash_attn.layers.rotary import apply_rotary_emb_func
|
38 |
+
from einops import rearrange
|
39 |
+
|
40 |
+
use_flash_rotary = True
|
41 |
+
except ImportError:
|
42 |
+
use_flash_rotary = False
|
43 |
+
print(
|
44 |
+
"Warning: import flash_attn rotary fail, please install FlashAttention rotary to get better performance "
|
45 |
+
"https://github.com/Dao-AILab/flash-attention/tree/main/csrc/rotary"
|
46 |
+
)
|
47 |
+
|
48 |
+
try:
|
49 |
+
from flash_attn.ops.rms_norm import rms_norm
|
50 |
+
except ImportError:
|
51 |
+
rms_norm = None
|
52 |
+
print(
|
53 |
+
"Warning: import flash_attn rms_norm fail, please install FlashAttention layer_norm to get better performance "
|
54 |
+
"https://github.com/Dao-AILab/flash-attention/tree/main/csrc/layer_norm"
|
55 |
+
)
|
56 |
+
|
57 |
+
from .configuration_qwen import QWenConfig
|
58 |
+
from .qwen_generation_utils import (
|
59 |
+
HistoryType,
|
60 |
+
make_context,
|
61 |
+
decode_tokens,
|
62 |
+
get_stop_words_ids,
|
63 |
+
StopWordsLogitsProcessor,
|
64 |
+
)
|
65 |
+
|
66 |
+
|
67 |
+
log_print.basicConfig(level=log_print.DEBUG)
|
68 |
+
|
69 |
+
|
70 |
+
logger = logging.get_logger(__name__)
|
71 |
+
|
72 |
+
_CHECKPOINT_FOR_DOC = "qwen"
|
73 |
+
_CONFIG_FOR_DOC = "QWenConfig"
|
74 |
+
|
75 |
+
QWen_PRETRAINED_MODEL_ARCHIVE_LIST = ["qwen-7b"]
|
76 |
+
|
77 |
+
try:
|
78 |
+
from flash_attn.flash_attn_interface import flash_attn_unpadded_func
|
79 |
+
except ImportError:
|
80 |
+
flash_attn_unpadded_func = None
|
81 |
+
print(
|
82 |
+
"Warning: import flash_attn fail, please install FlashAttention "
|
83 |
+
"https://github.com/Dao-AILab/flash-attention"
|
84 |
+
)
|
85 |
+
|
86 |
+
|
87 |
+
class FlashSelfAttention(torch.nn.Module):
|
88 |
+
def __init__(
|
89 |
+
self,
|
90 |
+
causal=False,
|
91 |
+
softmax_scale=None,
|
92 |
+
attention_dropout=0.0,
|
93 |
+
):
|
94 |
+
super().__init__()
|
95 |
+
assert flash_attn_unpadded_func is not None, (
|
96 |
+
"Please install FlashAttention first, " "e.g., with pip install flash-attn"
|
97 |
+
)
|
98 |
+
assert (
|
99 |
+
rearrange is not None
|
100 |
+
), "Please install einops first, e.g., with pip install einops"
|
101 |
+
self.causal = causal
|
102 |
+
self.softmax_scale = softmax_scale
|
103 |
+
self.dropout_p = attention_dropout
|
104 |
+
|
105 |
+
def forward(self, q, k, v):
|
106 |
+
assert all((i.dtype in [torch.float16, torch.bfloat16] for i in (q, k, v)))
|
107 |
+
assert all((i.is_cuda for i in (q, k, v)))
|
108 |
+
batch_size, seqlen_q = q.shape[0], q.shape[1]
|
109 |
+
seqlen_k = k.shape[1]
|
110 |
+
q, k, v = [rearrange(x, "b s ... -> (b s) ...") for x in [q, k, v]]
|
111 |
+
cu_seqlens_q = torch.arange(
|
112 |
+
0,
|
113 |
+
(batch_size + 1) * seqlen_q,
|
114 |
+
step=seqlen_q,
|
115 |
+
dtype=torch.int32,
|
116 |
+
device=q.device,
|
117 |
+
)
|
118 |
+
|
119 |
+
if self.training:
|
120 |
+
assert seqlen_k == seqlen_q
|
121 |
+
|
122 |
+
is_causal = self.causal
|
123 |
+
cu_seqlens_k = cu_seqlens_q
|
124 |
+
else:
|
125 |
+
is_causal = seqlen_q == seqlen_k
|
126 |
+
cu_seqlens_k = torch.arange(
|
127 |
+
0,
|
128 |
+
(batch_size + 1) * seqlen_k,
|
129 |
+
step=seqlen_k,
|
130 |
+
dtype=torch.int32,
|
131 |
+
device=q.device,
|
132 |
+
)
|
133 |
+
self.dropout_p = 0
|
134 |
+
output = flash_attn_unpadded_func(
|
135 |
+
q,
|
136 |
+
k,
|
137 |
+
v,
|
138 |
+
cu_seqlens_q,
|
139 |
+
cu_seqlens_k,
|
140 |
+
seqlen_q,
|
141 |
+
seqlen_k,
|
142 |
+
self.dropout_p,
|
143 |
+
softmax_scale=self.softmax_scale,
|
144 |
+
causal=is_causal,
|
145 |
+
)
|
146 |
+
|
147 |
+
output = rearrange(output, "(b s) ... -> b s ...", b=batch_size)
|
148 |
+
return output
|
149 |
+
|
150 |
+
|
151 |
+
class QWenAttention(nn.Module):
|
152 |
+
def __init__(self, config, layer_number=None):
|
153 |
+
super().__init__()
|
154 |
+
|
155 |
+
max_positions = config.max_position_embeddings
|
156 |
+
self.register_buffer(
|
157 |
+
"bias",
|
158 |
+
torch.tril(
|
159 |
+
torch.ones((max_positions, max_positions), dtype=torch.bool)
|
160 |
+
).view(1, 1, max_positions, max_positions),
|
161 |
+
persistent=False,
|
162 |
+
)
|
163 |
+
self.register_buffer("masked_bias", torch.tensor(-1e4), persistent=False)
|
164 |
+
self.layer_number = max(1, layer_number)
|
165 |
+
self.params_dtype = config.params_dtype
|
166 |
+
self.seq_length = config.seq_length
|
167 |
+
|
168 |
+
self.hidden_size = config.hidden_size
|
169 |
+
self.split_size = config.hidden_size
|
170 |
+
self.num_heads = config.num_attention_heads
|
171 |
+
self.head_dim = self.hidden_size // self.num_heads
|
172 |
+
|
173 |
+
self.use_flash_attn = config.use_flash_attn
|
174 |
+
self.scale_attn_weights = True
|
175 |
+
|
176 |
+
self.layer_idx = None
|
177 |
+
|
178 |
+
self.projection_size = config.kv_channels * config.num_attention_heads
|
179 |
+
|
180 |
+
assert self.projection_size % config.num_attention_heads == 0
|
181 |
+
self.hidden_size_per_attention_head = (
|
182 |
+
self.projection_size // config.num_attention_heads
|
183 |
+
)
|
184 |
+
|
185 |
+
self.c_attn = nn.Linear(config.hidden_size, 3 * self.projection_size)
|
186 |
+
|
187 |
+
self.c_proj = nn.Linear(
|
188 |
+
config.hidden_size, self.projection_size, bias=not config.no_bias
|
189 |
+
)
|
190 |
+
|
191 |
+
self.is_fp32 = not (config.bf16 or config.fp16)
|
192 |
+
if (
|
193 |
+
self.use_flash_attn
|
194 |
+
and flash_attn_unpadded_func is not None
|
195 |
+
and not self.is_fp32
|
196 |
+
):
|
197 |
+
self.core_attention_flash = FlashSelfAttention(
|
198 |
+
causal=True, attention_dropout=config.attn_pdrop
|
199 |
+
)
|
200 |
+
|
201 |
+
self.bf16 = config.bf16
|
202 |
+
|
203 |
+
if config.rotary_pct == 1.0:
|
204 |
+
self.rotary_ndims = None
|
205 |
+
else:
|
206 |
+
assert config.rotary_pct < 1
|
207 |
+
self.rotary_ndims = int(
|
208 |
+
self.hidden_size_per_attention_head * config.rotary_pct
|
209 |
+
)
|
210 |
+
dim = (
|
211 |
+
self.rotary_ndims
|
212 |
+
if self.rotary_ndims is not None
|
213 |
+
else self.hidden_size_per_attention_head
|
214 |
+
)
|
215 |
+
self.rotary_emb = RotaryEmbedding(dim, base=config.rotary_emb_base)
|
216 |
+
|
217 |
+
self.use_dynamic_ntk = config.use_dynamic_ntk
|
218 |
+
self.use_logn_attn = config.use_logn_attn
|
219 |
+
|
220 |
+
logn_list = [
|
221 |
+
math.log(i, self.seq_length) if i > self.seq_length else 1
|
222 |
+
for i in range(1, 32768)
|
223 |
+
]
|
224 |
+
self.logn_tensor = torch.Tensor(logn_list)[None, :, None, None]
|
225 |
+
self._ntk_cached = 1.0
|
226 |
+
|
227 |
+
self.attn_dropout = nn.Dropout(config.attn_pdrop)
|
228 |
+
|
229 |
+
def _attn(self, query, key, value, attention_mask=None, head_mask=None):
|
230 |
+
attn_weights = torch.matmul(query, key.transpose(-1, -2))
|
231 |
+
|
232 |
+
if self.scale_attn_weights:
|
233 |
+
attn_weights = attn_weights / torch.full(
|
234 |
+
[],
|
235 |
+
value.size(-1) ** 0.5,
|
236 |
+
dtype=attn_weights.dtype,
|
237 |
+
device=attn_weights.device,
|
238 |
+
)
|
239 |
+
|
240 |
+
query_length, key_length = query.size(-2), key.size(-2)
|
241 |
+
causal_mask = self.bias[
|
242 |
+
:, :, key_length - query_length : key_length, :key_length
|
243 |
+
]
|
244 |
+
mask_value = torch.finfo(attn_weights.dtype).min
|
245 |
+
mask_value = torch.full([], mask_value, dtype=attn_weights.dtype).to(
|
246 |
+
attn_weights.device
|
247 |
+
)
|
248 |
+
attn_weights = torch.where(
|
249 |
+
causal_mask, attn_weights.to(attn_weights.dtype), mask_value
|
250 |
+
)
|
251 |
+
|
252 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
|
253 |
+
|
254 |
+
attn_weights = attn_weights.type(value.dtype)
|
255 |
+
attn_weights = self.attn_dropout(attn_weights)
|
256 |
+
|
257 |
+
if head_mask is not None:
|
258 |
+
attn_weights = attn_weights * head_mask
|
259 |
+
|
260 |
+
attn_output = torch.matmul(attn_weights, value)
|
261 |
+
attn_output = attn_output.transpose(1, 2)
|
262 |
+
|
263 |
+
return attn_output, attn_weights
|
264 |
+
|
265 |
+
def _upcast_and_reordered_attn(
|
266 |
+
self, query, key, value, attention_mask=None, head_mask=None
|
267 |
+
):
|
268 |
+
bsz, num_heads, q_seq_len, dk = query.size()
|
269 |
+
_, _, k_seq_len, _ = key.size()
|
270 |
+
|
271 |
+
attn_weights = torch.empty(
|
272 |
+
bsz * num_heads,
|
273 |
+
q_seq_len,
|
274 |
+
k_seq_len,
|
275 |
+
dtype=torch.float32,
|
276 |
+
device=query.device,
|
277 |
+
)
|
278 |
+
|
279 |
+
scale_factor = 1.0
|
280 |
+
if self.scale_attn_weights:
|
281 |
+
scale_factor /= float(value.size(-1)) ** 0.5
|
282 |
+
|
283 |
+
with autocast(enabled=False):
|
284 |
+
q, k = query.reshape(-1, q_seq_len, dk), key.transpose(-1, -2).reshape(
|
285 |
+
-1, dk, k_seq_len
|
286 |
+
)
|
287 |
+
attn_weights = torch.baddbmm(
|
288 |
+
attn_weights, q.float(), k.float(), beta=0, alpha=scale_factor
|
289 |
+
)
|
290 |
+
attn_weights = attn_weights.reshape(bsz, num_heads, q_seq_len, k_seq_len)
|
291 |
+
|
292 |
+
query_length, key_length = query.size(-2), key.size(-2)
|
293 |
+
causal_mask = self.bias[
|
294 |
+
:, :, key_length - query_length : key_length, :key_length
|
295 |
+
]
|
296 |
+
mask_value = torch.finfo(attn_weights.dtype).min
|
297 |
+
mask_value = torch.tensor(mask_value, dtype=attn_weights.dtype).to(
|
298 |
+
attn_weights.device
|
299 |
+
)
|
300 |
+
attn_weights = torch.where(causal_mask, attn_weights, mask_value)
|
301 |
+
|
302 |
+
if attention_mask is not None:
|
303 |
+
attn_weights = attn_weights + attention_mask
|
304 |
+
|
305 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
|
306 |
+
|
307 |
+
if attn_weights.dtype != torch.float32:
|
308 |
+
raise RuntimeError(
|
309 |
+
"Error with upcasting, attn_weights does not have dtype torch.float32"
|
310 |
+
)
|
311 |
+
attn_weights = attn_weights.type(value.dtype)
|
312 |
+
attn_weights = self.attn_dropout(attn_weights)
|
313 |
+
|
314 |
+
if head_mask is not None:
|
315 |
+
attn_weights = attn_weights * head_mask
|
316 |
+
|
317 |
+
attn_output = torch.matmul(attn_weights, value)
|
318 |
+
|
319 |
+
return attn_output, attn_weights
|
320 |
+
|
321 |
+
def _split_heads(self, tensor, num_heads, attn_head_size):
|
322 |
+
new_shape = tensor.size()[:-1] + (num_heads, attn_head_size)
|
323 |
+
tensor = tensor.view(new_shape)
|
324 |
+
return tensor
|
325 |
+
|
326 |
+
def _merge_heads(self, tensor, num_heads, attn_head_size):
|
327 |
+
tensor = tensor.contiguous()
|
328 |
+
new_shape = tensor.size()[:-2] + (num_heads * attn_head_size,)
|
329 |
+
return tensor.view(new_shape)
|
330 |
+
|
331 |
+
def forward(
|
332 |
+
self,
|
333 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]],
|
334 |
+
layer_past: Optional[Tuple[torch.Tensor]] = None,
|
335 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
336 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
337 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
338 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
339 |
+
output_attentions: Optional[bool] = False,
|
340 |
+
use_cache: Optional[bool] = False,
|
341 |
+
):
|
342 |
+
|
343 |
+
mixed_x_layer = self.c_attn(hidden_states)
|
344 |
+
query, key, value = mixed_x_layer.split(self.split_size, dim=2)
|
345 |
+
|
346 |
+
query = self._split_heads(query, self.num_heads, self.head_dim)
|
347 |
+
key = self._split_heads(key, self.num_heads, self.head_dim)
|
348 |
+
value = self._split_heads(value, self.num_heads, self.head_dim)
|
349 |
+
|
350 |
+
kv_seq_len = hidden_states.size()[1]
|
351 |
+
if layer_past:
|
352 |
+
# layer past[0] shape: bs * seq_len * head_num * dim
|
353 |
+
kv_seq_len += layer_past[0].shape[1]
|
354 |
+
if (
|
355 |
+
self.use_dynamic_ntk
|
356 |
+
and kv_seq_len == hidden_states.size()[1]
|
357 |
+
and not self.training
|
358 |
+
):
|
359 |
+
context_value = math.log(kv_seq_len / self.seq_length, 2) + 1
|
360 |
+
ntk_alpha = 2 ** math.ceil(context_value) - 1
|
361 |
+
ntk_alpha = max(ntk_alpha, 1)
|
362 |
+
self._ntk_cached = ntk_alpha
|
363 |
+
|
364 |
+
else:
|
365 |
+
ntk_alpha = self._ntk_cached
|
366 |
+
|
367 |
+
rotary_pos_emb = self.rotary_emb(kv_seq_len, ntk_alpha=ntk_alpha).to(
|
368 |
+
hidden_states.device
|
369 |
+
)
|
370 |
+
|
371 |
+
if rotary_pos_emb is not None:
|
372 |
+
if isinstance(rotary_pos_emb, tuple):
|
373 |
+
rotary_pos_emb = rotary_pos_emb
|
374 |
+
else:
|
375 |
+
rotary_pos_emb = (rotary_pos_emb,) * 2
|
376 |
+
|
377 |
+
if rotary_pos_emb is not None:
|
378 |
+
q_pos_emb, k_pos_emb = rotary_pos_emb
|
379 |
+
# Slice the pos emb for current inference
|
380 |
+
cur_len = query.shape[1]
|
381 |
+
q_pos_emb = q_pos_emb[:, -cur_len:, :, :]
|
382 |
+
k_pos_emb = k_pos_emb[:, -cur_len:, :, :]
|
383 |
+
query = apply_rotary_pos_emb(query, q_pos_emb)
|
384 |
+
key = apply_rotary_pos_emb(key, k_pos_emb)
|
385 |
+
|
386 |
+
if layer_past is not None:
|
387 |
+
past_key, past_value = layer_past[0], layer_past[1]
|
388 |
+
key = torch.cat((past_key, key), dim=1)
|
389 |
+
value = torch.cat((past_value, value), dim=1)
|
390 |
+
|
391 |
+
if use_cache:
|
392 |
+
present = (key, value)
|
393 |
+
else:
|
394 |
+
present = None
|
395 |
+
|
396 |
+
if self.use_logn_attn and not self.training:
|
397 |
+
if self.logn_tensor.device != query.device:
|
398 |
+
self.logn_tensor = self.logn_tensor.to(query.device).type_as(query)
|
399 |
+
seq_start = key.size(1) - query.size(1)
|
400 |
+
seq_end = key.size(1)
|
401 |
+
logn_tensor = self.logn_tensor[:, seq_start:seq_end, :, :]
|
402 |
+
query = query * logn_tensor.expand_as(query)
|
403 |
+
|
404 |
+
if (
|
405 |
+
self.use_flash_attn
|
406 |
+
and flash_attn_unpadded_func is not None
|
407 |
+
and not self.is_fp32
|
408 |
+
and query.is_cuda
|
409 |
+
):
|
410 |
+
q, k, v = query, key, value
|
411 |
+
context_layer = self.core_attention_flash(q, k, v)
|
412 |
+
|
413 |
+
context_layer = rearrange(
|
414 |
+
context_layer, "b s h d -> b s (h d)"
|
415 |
+
).contiguous()
|
416 |
+
else:
|
417 |
+
query = query.permute(0, 2, 1, 3)
|
418 |
+
key = key.permute(0, 2, 1, 3)
|
419 |
+
value = value.permute(0, 2, 1, 3)
|
420 |
+
attn_output, attn_weight = self._attn(
|
421 |
+
query, key, value, attention_mask, head_mask
|
422 |
+
)
|
423 |
+
context_layer = self._merge_heads(
|
424 |
+
attn_output, self.num_heads, self.head_dim
|
425 |
+
)
|
426 |
+
|
427 |
+
attn_output = self.c_proj(context_layer)
|
428 |
+
outputs = (attn_output, present)
|
429 |
+
if output_attentions:
|
430 |
+
if (
|
431 |
+
self.use_flash_attn
|
432 |
+
and flash_attn_unpadded_func is not None
|
433 |
+
and not self.is_fp32
|
434 |
+
):
|
435 |
+
raise ValueError("Cannot output attentions while using flash-attn")
|
436 |
+
else:
|
437 |
+
outputs += (attn_weight,)
|
438 |
+
|
439 |
+
return outputs
|
440 |
+
|
441 |
+
|
442 |
+
class QWenMLP(nn.Module):
|
443 |
+
def __init__(self, config):
|
444 |
+
super().__init__()
|
445 |
+
self.w1 = nn.Linear(
|
446 |
+
config.hidden_size, config.ffn_hidden_size // 2, bias=not config.no_bias
|
447 |
+
)
|
448 |
+
self.w2 = nn.Linear(
|
449 |
+
config.hidden_size, config.ffn_hidden_size // 2, bias=not config.no_bias
|
450 |
+
)
|
451 |
+
ff_dim_in = config.ffn_hidden_size // 2
|
452 |
+
self.c_proj = nn.Linear(ff_dim_in, config.hidden_size, bias=not config.no_bias)
|
453 |
+
|
454 |
+
def forward(self, hidden_states):
|
455 |
+
a1 = self.w1(hidden_states)
|
456 |
+
a2 = self.w2(hidden_states)
|
457 |
+
intermediate_parallel = a1 * F.silu(a2)
|
458 |
+
output = self.c_proj(intermediate_parallel)
|
459 |
+
return output
|
460 |
+
|
461 |
+
|
462 |
+
class QWenBlock(nn.Module):
|
463 |
+
def __init__(self, config, layer_idx=None, num_expert=1):
|
464 |
+
super().__init__()
|
465 |
+
self.num_expert = num_expert
|
466 |
+
self.layer_number = layer_idx
|
467 |
+
self.apply_residual_connection_post_layernorm = (
|
468 |
+
config.apply_residual_connection_post_layernorm
|
469 |
+
)
|
470 |
+
hidden_size = config.hidden_size
|
471 |
+
self.apply_residual_connection_post_layernorm = (
|
472 |
+
config.apply_residual_connection_post_layernorm
|
473 |
+
)
|
474 |
+
self.bf16 = config.bf16
|
475 |
+
|
476 |
+
self.ln_1 = RMSNorm(
|
477 |
+
hidden_size,
|
478 |
+
eps=config.layer_norm_epsilon,
|
479 |
+
)
|
480 |
+
self.attn = QWenAttention(config, layer_number=layer_idx)
|
481 |
+
self.ln_2 = RMSNorm(
|
482 |
+
hidden_size,
|
483 |
+
eps=config.layer_norm_epsilon,
|
484 |
+
)
|
485 |
+
|
486 |
+
self.mlp = QWenMLP(config)
|
487 |
+
|
488 |
+
def forward(
|
489 |
+
self,
|
490 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]],
|
491 |
+
layer_past: Optional[Tuple[torch.Tensor]] = None,
|
492 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
493 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
494 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
495 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
496 |
+
use_cache: Optional[bool] = False,
|
497 |
+
output_attentions: Optional[bool] = False,
|
498 |
+
):
|
499 |
+
layernorm_output = self.ln_1(hidden_states)
|
500 |
+
|
501 |
+
attn_outputs = self.attn(
|
502 |
+
layernorm_output,
|
503 |
+
layer_past=layer_past,
|
504 |
+
attention_mask=attention_mask,
|
505 |
+
head_mask=head_mask,
|
506 |
+
use_cache=use_cache,
|
507 |
+
output_attentions=output_attentions,
|
508 |
+
)
|
509 |
+
attn_output = attn_outputs[0]
|
510 |
+
|
511 |
+
outputs = attn_outputs[1:]
|
512 |
+
|
513 |
+
if self.apply_residual_connection_post_layernorm:
|
514 |
+
residual = layernorm_output
|
515 |
+
else:
|
516 |
+
residual = hidden_states
|
517 |
+
layernorm_input = attn_output + residual
|
518 |
+
|
519 |
+
layernorm_output = self.ln_2(layernorm_input)
|
520 |
+
|
521 |
+
if self.apply_residual_connection_post_layernorm:
|
522 |
+
residual = layernorm_output
|
523 |
+
else:
|
524 |
+
residual = layernorm_input
|
525 |
+
|
526 |
+
mlp_output = self.mlp(layernorm_output)
|
527 |
+
hidden_states = residual + mlp_output
|
528 |
+
|
529 |
+
if use_cache:
|
530 |
+
outputs = (hidden_states,) + outputs
|
531 |
+
else:
|
532 |
+
outputs = (hidden_states,) + outputs[1:]
|
533 |
+
|
534 |
+
return outputs
|
535 |
+
|
536 |
+
|
537 |
+
class QWenPreTrainedModel(PreTrainedModel):
|
538 |
+
config_class = QWenConfig
|
539 |
+
base_model_prefix = "transformer"
|
540 |
+
is_parallelizable = False
|
541 |
+
supports_gradient_checkpointing = True
|
542 |
+
_no_split_modules = ["QWenBlock"]
|
543 |
+
|
544 |
+
def __init__(self, *inputs, **kwargs):
|
545 |
+
super().__init__(*inputs, **kwargs)
|
546 |
+
|
547 |
+
def _init_weights(self, module):
|
548 |
+
"""Initialize the weights."""
|
549 |
+
if isinstance(module, nn.Linear):
|
550 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
551 |
+
if module.bias is not None:
|
552 |
+
module.bias.data.zero_()
|
553 |
+
elif isinstance(module, nn.Embedding):
|
554 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
555 |
+
if module.padding_idx is not None:
|
556 |
+
module.weight.data[module.padding_idx].zero_()
|
557 |
+
elif isinstance(module, RMSNorm):
|
558 |
+
module.weight.data.fill_(1.0)
|
559 |
+
|
560 |
+
for name, p in module.named_parameters():
|
561 |
+
if name == "c_proj.weight":
|
562 |
+
p.data.normal_(
|
563 |
+
mean=0.0,
|
564 |
+
std=(
|
565 |
+
self.config.initializer_range
|
566 |
+
/ math.sqrt(2 * self.config.n_layer)
|
567 |
+
),
|
568 |
+
)
|
569 |
+
|
570 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
571 |
+
if isinstance(module, QWenModel):
|
572 |
+
module.gradient_checkpointing = value
|
573 |
+
|
574 |
+
|
575 |
+
class QWenModel(QWenPreTrainedModel):
|
576 |
+
_keys_to_ignore_on_load_missing = ["attn.masked_bias"]
|
577 |
+
|
578 |
+
def __init__(self, config):
|
579 |
+
super().__init__(config)
|
580 |
+
self.vocab_size = config.padded_vocab_size
|
581 |
+
self.num_hidden_layers = config.num_hidden_layers
|
582 |
+
self.embed_dim = config.hidden_size
|
583 |
+
|
584 |
+
max_sequence_length = config.max_position_embeddings
|
585 |
+
self.position_embedding_type = config.pos_emb
|
586 |
+
self.gradient_checkpointing = False
|
587 |
+
|
588 |
+
if self.position_embedding_type == "learned":
|
589 |
+
self.wpe = nn.Embedding(max_sequence_length, self.embed_dim)
|
590 |
+
self.init_method(self.position_embeddings.weight)
|
591 |
+
self._position_embeddings_key = "position_embeddings"
|
592 |
+
self.init_method(self.position_embeddings.weight)
|
593 |
+
else:
|
594 |
+
self.wpe = None
|
595 |
+
self._position_embeddings_key = ""
|
596 |
+
|
597 |
+
self.wte = nn.Embedding(self.vocab_size, self.embed_dim)
|
598 |
+
|
599 |
+
self.drop = nn.Dropout(config.embd_pdrop)
|
600 |
+
self.h = nn.ModuleList(
|
601 |
+
[
|
602 |
+
QWenBlock(
|
603 |
+
config,
|
604 |
+
layer_idx=i,
|
605 |
+
)
|
606 |
+
for i in range(config.num_hidden_layers)
|
607 |
+
]
|
608 |
+
)
|
609 |
+
self.ln_f = RMSNorm(
|
610 |
+
self.embed_dim,
|
611 |
+
eps=config.layer_norm_epsilon,
|
612 |
+
)
|
613 |
+
|
614 |
+
self.post_init()
|
615 |
+
|
616 |
+
def get_input_embeddings(self):
|
617 |
+
return self.wte
|
618 |
+
|
619 |
+
def set_input_embeddings(self, new_embeddings):
|
620 |
+
self.wte = new_embeddings
|
621 |
+
|
622 |
+
def forward(
|
623 |
+
self,
|
624 |
+
input_ids: Optional[torch.LongTensor] = None,
|
625 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
626 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
627 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
628 |
+
position_ids: Optional[torch.LongTensor] = None,
|
629 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
630 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
631 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
632 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
633 |
+
use_cache: Optional[bool] = None,
|
634 |
+
output_attentions: Optional[bool] = None,
|
635 |
+
output_hidden_states: Optional[bool] = None,
|
636 |
+
return_dict: Optional[bool] = None,
|
637 |
+
):
|
638 |
+
output_attentions = (
|
639 |
+
output_attentions
|
640 |
+
if output_attentions is not None
|
641 |
+
else self.config.output_attentions
|
642 |
+
)
|
643 |
+
output_hidden_states = (
|
644 |
+
output_hidden_states
|
645 |
+
if output_hidden_states is not None
|
646 |
+
else self.config.output_hidden_states
|
647 |
+
)
|
648 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
649 |
+
return_dict = (
|
650 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
651 |
+
)
|
652 |
+
|
653 |
+
if input_ids is not None and inputs_embeds is not None:
|
654 |
+
raise ValueError(
|
655 |
+
"You cannot specify both input_ids and inputs_embeds at the same time"
|
656 |
+
)
|
657 |
+
elif input_ids is not None:
|
658 |
+
input_shape = input_ids.size()
|
659 |
+
input_ids = input_ids.view(-1, input_shape[-1])
|
660 |
+
batch_size = input_ids.shape[0]
|
661 |
+
elif inputs_embeds is not None:
|
662 |
+
input_shape = inputs_embeds.size()[:-1]
|
663 |
+
batch_size = inputs_embeds.shape[0]
|
664 |
+
else:
|
665 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
666 |
+
|
667 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
668 |
+
|
669 |
+
if token_type_ids is not None:
|
670 |
+
token_type_ids = token_type_ids.view(-1, input_shape[-1])
|
671 |
+
if position_ids is not None:
|
672 |
+
position_ids = position_ids.view(-1, input_shape[-1])
|
673 |
+
|
674 |
+
if past_key_values is None:
|
675 |
+
past_length = 0
|
676 |
+
past_key_values = tuple([None] * len(self.h))
|
677 |
+
else:
|
678 |
+
past_length = past_key_values[0][0].size(-2)
|
679 |
+
|
680 |
+
if position_ids is None:
|
681 |
+
position_ids = torch.arange(
|
682 |
+
past_length,
|
683 |
+
input_shape[-1] + past_length,
|
684 |
+
dtype=torch.long,
|
685 |
+
device=device,
|
686 |
+
)
|
687 |
+
position_ids = position_ids.unsqueeze(0).view(-1, input_shape[-1])
|
688 |
+
|
689 |
+
if attention_mask is not None:
|
690 |
+
if batch_size <= 0:
|
691 |
+
raise ValueError("batch_size has to be defined and > 0")
|
692 |
+
attention_mask = attention_mask.view(batch_size, -1)
|
693 |
+
attention_mask = attention_mask[:, None, None, :]
|
694 |
+
attention_mask = attention_mask.to(dtype=self.dtype)
|
695 |
+
attention_mask = (1.0 - attention_mask) * torch.finfo(self.dtype).min
|
696 |
+
|
697 |
+
encoder_attention_mask = None
|
698 |
+
head_mask = self.get_head_mask(head_mask, self.config.n_layer)
|
699 |
+
|
700 |
+
if inputs_embeds is None:
|
701 |
+
inputs_embeds = self.wte(input_ids)
|
702 |
+
hidden_states = inputs_embeds
|
703 |
+
if self.wpe is not None:
|
704 |
+
position_embeds = self.wpe(position_ids)
|
705 |
+
hidden_states = hidden_states + position_embeds
|
706 |
+
|
707 |
+
hidden_states = self.drop(hidden_states)
|
708 |
+
output_shape = input_shape + (hidden_states.size(-1),)
|
709 |
+
|
710 |
+
if self.gradient_checkpointing and self.training:
|
711 |
+
if use_cache:
|
712 |
+
logger.warning_once(
|
713 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
714 |
+
)
|
715 |
+
use_cache = False
|
716 |
+
|
717 |
+
presents = () if use_cache else None
|
718 |
+
all_self_attentions = () if output_attentions else None
|
719 |
+
all_hidden_states = () if output_hidden_states else None
|
720 |
+
for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)):
|
721 |
+
|
722 |
+
if output_hidden_states:
|
723 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
724 |
+
|
725 |
+
if self.gradient_checkpointing and self.training:
|
726 |
+
|
727 |
+
def create_custom_forward(module):
|
728 |
+
def custom_forward(*inputs):
|
729 |
+
# None for past_key_value
|
730 |
+
return module(*inputs, use_cache, output_attentions)
|
731 |
+
|
732 |
+
return custom_forward
|
733 |
+
|
734 |
+
outputs = torch.utils.checkpoint.checkpoint(
|
735 |
+
create_custom_forward(block),
|
736 |
+
hidden_states,
|
737 |
+
None,
|
738 |
+
attention_mask,
|
739 |
+
head_mask[i],
|
740 |
+
encoder_hidden_states,
|
741 |
+
encoder_attention_mask,
|
742 |
+
)
|
743 |
+
else:
|
744 |
+
outputs = block(
|
745 |
+
hidden_states,
|
746 |
+
layer_past=layer_past,
|
747 |
+
attention_mask=attention_mask,
|
748 |
+
head_mask=head_mask[i],
|
749 |
+
encoder_hidden_states=encoder_hidden_states,
|
750 |
+
encoder_attention_mask=encoder_attention_mask,
|
751 |
+
use_cache=use_cache,
|
752 |
+
output_attentions=output_attentions,
|
753 |
+
)
|
754 |
+
|
755 |
+
hidden_states = outputs[0]
|
756 |
+
if use_cache is True:
|
757 |
+
presents = presents + (outputs[2 if output_attentions else 1],)
|
758 |
+
|
759 |
+
if output_attentions:
|
760 |
+
all_self_attentions = all_self_attentions + (outputs[1],)
|
761 |
+
|
762 |
+
hidden_states = self.ln_f(hidden_states)
|
763 |
+
hidden_states = hidden_states.view(output_shape)
|
764 |
+
|
765 |
+
if not return_dict:
|
766 |
+
return tuple(
|
767 |
+
v for v in [hidden_states, presents, all_hidden_states] if v is not None
|
768 |
+
)
|
769 |
+
|
770 |
+
return BaseModelOutputWithPast(
|
771 |
+
last_hidden_state=hidden_states,
|
772 |
+
past_key_values=presents,
|
773 |
+
hidden_states=all_hidden_states,
|
774 |
+
attentions=all_self_attentions,
|
775 |
+
)
|
776 |
+
|
777 |
+
|
778 |
+
class QWenLMHeadModel(QWenPreTrainedModel):
|
779 |
+
_keys_to_ignore_on_load_missing = [r"h\.\d+\.attn\.rotary_emb\.inv_freq"]
|
780 |
+
_keys_to_ignore_on_load_unexpected = [r"h\.\d+\.attn\.masked_bias"]
|
781 |
+
|
782 |
+
def __init__(self, config):
|
783 |
+
super().__init__(config)
|
784 |
+
self.transformer = QWenModel(config)
|
785 |
+
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
|
786 |
+
assert not (
|
787 |
+
config.bf16 and config.fp16
|
788 |
+
), "In config, bf16 and fp16 cannot both be true"
|
789 |
+
if config.bf16:
|
790 |
+
self.transformer.bfloat16()
|
791 |
+
self.lm_head.bfloat16()
|
792 |
+
if config.fp16:
|
793 |
+
self.transformer.half()
|
794 |
+
self.lm_head.half()
|
795 |
+
self.post_init()
|
796 |
+
|
797 |
+
def get_output_embeddings(self):
|
798 |
+
return self.lm_head
|
799 |
+
|
800 |
+
def set_output_embeddings(self, new_embeddings):
|
801 |
+
self.lm_head = new_embeddings
|
802 |
+
|
803 |
+
def prepare_inputs_for_generation(
|
804 |
+
self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs
|
805 |
+
):
|
806 |
+
token_type_ids = kwargs.get("token_type_ids", None)
|
807 |
+
if past_key_values:
|
808 |
+
input_ids = input_ids[:, -1].unsqueeze(-1)
|
809 |
+
if token_type_ids is not None:
|
810 |
+
token_type_ids = token_type_ids[:, -1].unsqueeze(-1)
|
811 |
+
|
812 |
+
attention_mask = kwargs.get("attention_mask", None)
|
813 |
+
position_ids = kwargs.get("position_ids", None)
|
814 |
+
|
815 |
+
if attention_mask is not None and position_ids is None:
|
816 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
817 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
818 |
+
if past_key_values:
|
819 |
+
position_ids = position_ids[:, -1].unsqueeze(-1)
|
820 |
+
else:
|
821 |
+
position_ids = None
|
822 |
+
|
823 |
+
if inputs_embeds is not None and past_key_values is None:
|
824 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
825 |
+
else:
|
826 |
+
model_inputs = {"input_ids": input_ids}
|
827 |
+
|
828 |
+
model_inputs.update(
|
829 |
+
{
|
830 |
+
"past_key_values": past_key_values,
|
831 |
+
"use_cache": kwargs.get("use_cache"),
|
832 |
+
"position_ids": position_ids,
|
833 |
+
"attention_mask": attention_mask,
|
834 |
+
"token_type_ids": token_type_ids,
|
835 |
+
}
|
836 |
+
)
|
837 |
+
return model_inputs
|
838 |
+
|
839 |
+
def forward(
|
840 |
+
self,
|
841 |
+
input_ids: Optional[torch.LongTensor] = None,
|
842 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
843 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
844 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
845 |
+
position_ids: Optional[torch.LongTensor] = None,
|
846 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
847 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
848 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
849 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
850 |
+
labels: Optional[torch.LongTensor] = None,
|
851 |
+
use_cache: Optional[bool] = None,
|
852 |
+
output_attentions: Optional[bool] = None,
|
853 |
+
output_hidden_states: Optional[bool] = None,
|
854 |
+
return_dict: Optional[bool] = None,
|
855 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
856 |
+
|
857 |
+
return_dict = (
|
858 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
859 |
+
)
|
860 |
+
|
861 |
+
transformer_outputs = self.transformer(
|
862 |
+
input_ids,
|
863 |
+
past_key_values=past_key_values,
|
864 |
+
attention_mask=attention_mask,
|
865 |
+
token_type_ids=token_type_ids,
|
866 |
+
position_ids=position_ids,
|
867 |
+
head_mask=head_mask,
|
868 |
+
inputs_embeds=inputs_embeds,
|
869 |
+
encoder_hidden_states=encoder_hidden_states,
|
870 |
+
encoder_attention_mask=encoder_attention_mask,
|
871 |
+
use_cache=use_cache,
|
872 |
+
output_attentions=output_attentions,
|
873 |
+
output_hidden_states=output_hidden_states,
|
874 |
+
return_dict=return_dict,
|
875 |
+
)
|
876 |
+
hidden_states = transformer_outputs[0]
|
877 |
+
|
878 |
+
lm_logits = self.lm_head(hidden_states)
|
879 |
+
|
880 |
+
loss = None
|
881 |
+
if labels is not None:
|
882 |
+
labels = labels.to(lm_logits.device)
|
883 |
+
shift_logits = lm_logits[..., :-1, :].contiguous()
|
884 |
+
shift_labels = labels[..., 1:].contiguous()
|
885 |
+
loss_fct = CrossEntropyLoss()
|
886 |
+
loss = loss_fct(
|
887 |
+
shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)
|
888 |
+
)
|
889 |
+
|
890 |
+
if not return_dict:
|
891 |
+
output = (lm_logits,) + transformer_outputs[1:]
|
892 |
+
return ((loss,) + output) if loss is not None else output
|
893 |
+
if self.training:
|
894 |
+
lm_logits=None
|
895 |
+
|
896 |
+
return CausalLMOutputWithPast(
|
897 |
+
loss=loss,
|
898 |
+
logits=lm_logits,
|
899 |
+
past_key_values=transformer_outputs.past_key_values,
|
900 |
+
hidden_states=transformer_outputs.hidden_states,
|
901 |
+
attentions=transformer_outputs.attentions,
|
902 |
+
)
|
903 |
+
|
904 |
+
@staticmethod
|
905 |
+
def _reorder_cache(
|
906 |
+
past_key_values: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor
|
907 |
+
) -> Tuple[Tuple[torch.Tensor]]:
|
908 |
+
|
909 |
+
return tuple(
|
910 |
+
tuple(
|
911 |
+
past_state.index_select(0, beam_idx.to(past_state.device))
|
912 |
+
for past_state in layer_past
|
913 |
+
)
|
914 |
+
for layer_past in past_key_values
|
915 |
+
)
|
916 |
+
|
917 |
+
def chat(
|
918 |
+
self,
|
919 |
+
tokenizer: PreTrainedTokenizer,
|
920 |
+
query: str,
|
921 |
+
history: Optional[HistoryType],
|
922 |
+
system: str = "You are a helpful assistant.",
|
923 |
+
append_history: bool = True,
|
924 |
+
) -> Tuple[str, HistoryType]:
|
925 |
+
|
926 |
+
if history is None:
|
927 |
+
history = []
|
928 |
+
|
929 |
+
raw_text, context_tokens = make_context(
|
930 |
+
tokenizer,
|
931 |
+
query,
|
932 |
+
history=history,
|
933 |
+
system=system,
|
934 |
+
max_window_size=6144,
|
935 |
+
chat_format=self.generation_config.chat_format,
|
936 |
+
)
|
937 |
+
|
938 |
+
stop_words_ids = get_stop_words_ids(
|
939 |
+
self.generation_config.chat_format, tokenizer
|
940 |
+
)
|
941 |
+
input_ids = torch.tensor([context_tokens]).to(self.device)
|
942 |
+
|
943 |
+
outputs = self.generate(
|
944 |
+
input_ids,
|
945 |
+
stop_words_ids=stop_words_ids,
|
946 |
+
return_dict_in_generate=False,
|
947 |
+
)
|
948 |
+
|
949 |
+
response = decode_tokens(
|
950 |
+
outputs[0],
|
951 |
+
tokenizer,
|
952 |
+
raw_text_len=len(raw_text),
|
953 |
+
context_length=len(context_tokens),
|
954 |
+
chat_format=self.generation_config.chat_format,
|
955 |
+
verbose=False,
|
956 |
+
)
|
957 |
+
|
958 |
+
if append_history:
|
959 |
+
history.append((query, response))
|
960 |
+
|
961 |
+
return response, history
|
962 |
+
|
963 |
+
def generate(
|
964 |
+
self,
|
965 |
+
inputs: Optional[torch.Tensor] = None,
|
966 |
+
generation_config: Optional[GenerationConfig] = None,
|
967 |
+
logits_processor: Optional[LogitsProcessorList] = None,
|
968 |
+
stopping_criteria: Optional[StoppingCriteriaList] = None,
|
969 |
+
prefix_allowed_tokens_fn: Optional[
|
970 |
+
Callable[[int, torch.Tensor], List[int]]
|
971 |
+
] = None,
|
972 |
+
synced_gpus: Optional[bool] = None,
|
973 |
+
streamer: Optional["BaseStreamer"] = None,
|
974 |
+
**kwargs,
|
975 |
+
) -> Union[GenerateOutput, torch.LongTensor]:
|
976 |
+
# Process stop_words_ids.
|
977 |
+
stop_words_ids = kwargs.pop("stop_words_ids", None)
|
978 |
+
if stop_words_ids is None and generation_config is not None:
|
979 |
+
stop_words_ids = getattr(generation_config, "stop_words_ids", None)
|
980 |
+
if stop_words_ids is None:
|
981 |
+
stop_words_ids = getattr(self.generation_config, "stop_words_ids", None)
|
982 |
+
|
983 |
+
if stop_words_ids is not None:
|
984 |
+
stop_words_logits_processor = StopWordsLogitsProcessor(
|
985 |
+
stop_words_ids=stop_words_ids,
|
986 |
+
eos_token_id=self.generation_config.eos_token_id,
|
987 |
+
)
|
988 |
+
if logits_processor is None:
|
989 |
+
logits_processor = LogitsProcessorList([stop_words_logits_processor])
|
990 |
+
else:
|
991 |
+
logits_processor.append(stop_words_logits_processor)
|
992 |
+
|
993 |
+
return super().generate(
|
994 |
+
inputs,
|
995 |
+
generation_config,
|
996 |
+
logits_processor,
|
997 |
+
stopping_criteria,
|
998 |
+
prefix_allowed_tokens_fn,
|
999 |
+
synced_gpus,
|
1000 |
+
streamer,
|
1001 |
+
**kwargs,
|
1002 |
+
)
|
1003 |
+
|
1004 |
+
|
1005 |
+
class RotaryEmbedding(torch.nn.Module):
|
1006 |
+
def __init__(self, dim, base=10000):
|
1007 |
+
super().__init__()
|
1008 |
+
self.dim = dim
|
1009 |
+
self.base = base
|
1010 |
+
self.inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float() / dim))
|
1011 |
+
if importlib.util.find_spec("einops") is None:
|
1012 |
+
raise RuntimeError("einops is required for Rotary Embedding")
|
1013 |
+
|
1014 |
+
self._rotary_pos_emb_cache = None
|
1015 |
+
self._seq_len_cached = 0
|
1016 |
+
self._ntk_alpha_cached = 1.0
|
1017 |
+
|
1018 |
+
def update_rotary_pos_emb_cache(self, max_seq_len, offset=0, ntk_alpha=1.0):
|
1019 |
+
seqlen = max_seq_len + offset
|
1020 |
+
if seqlen > self._seq_len_cached or ntk_alpha != self._ntk_alpha_cached:
|
1021 |
+
base = self.base * ntk_alpha ** (self.dim / (self.dim - 2))
|
1022 |
+
self.inv_freq = 1.0 / (
|
1023 |
+
base
|
1024 |
+
** (
|
1025 |
+
torch.arange(0, self.dim, 2, device=self.inv_freq.device).float()
|
1026 |
+
/ self.dim
|
1027 |
+
)
|
1028 |
+
)
|
1029 |
+
self._seq_len_cached = seqlen
|
1030 |
+
self._ntk_alpha_cached = ntk_alpha
|
1031 |
+
seq = torch.arange(seqlen, device=self.inv_freq.device, dtype=torch.float32)
|
1032 |
+
freqs = torch.outer(seq, self.inv_freq)
|
1033 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
1034 |
+
from einops import rearrange
|
1035 |
+
|
1036 |
+
self._rotary_pos_emb_cache = rearrange(emb, "n d -> 1 n 1 d")
|
1037 |
+
|
1038 |
+
def forward(self, max_seq_len, offset=0, ntk_alpha=1.0):
|
1039 |
+
self.update_rotary_pos_emb_cache(max_seq_len, offset, ntk_alpha)
|
1040 |
+
return self._rotary_pos_emb_cache[:, offset : offset + max_seq_len]
|
1041 |
+
|
1042 |
+
|
1043 |
+
def _rotate_half(x):
|
1044 |
+
from einops import rearrange
|
1045 |
+
|
1046 |
+
x = rearrange(x, "... (j d) -> ... j d", j=2)
|
1047 |
+
x1, x2 = x.unbind(dim=-2)
|
1048 |
+
return torch.cat((-x2, x1), dim=-1)
|
1049 |
+
|
1050 |
+
|
1051 |
+
def apply_rotary_pos_emb(t, freqs, use_flash_rotary=False):
|
1052 |
+
if use_flash_rotary:
|
1053 |
+
t_ = t.float()
|
1054 |
+
freqs = freqs.squeeze(0).squeeze(1)
|
1055 |
+
cos = freqs[:, : freqs.shape[-1] // 2].cos()
|
1056 |
+
sin = freqs[:, : freqs.shape[-1] // 2].sin()
|
1057 |
+
output = apply_rotary_emb_func(t_, cos, sin).type_as(t)
|
1058 |
+
return output
|
1059 |
+
else:
|
1060 |
+
rot_dim = freqs.shape[-1]
|
1061 |
+
t_, t_pass_ = t[..., :rot_dim], t[..., rot_dim:]
|
1062 |
+
t_ = t_.float()
|
1063 |
+
t_pass_ = t_pass_.float()
|
1064 |
+
t_ = (t_ * freqs.cos()) + (_rotate_half(t_) * freqs.sin())
|
1065 |
+
return torch.cat((t_, t_pass_), dim=-1).type_as(t)
|
1066 |
+
|
1067 |
+
|
1068 |
+
class RMSNorm(torch.nn.Module):
|
1069 |
+
def __init__(self, dim: int, eps: float = 1e-6):
|
1070 |
+
super().__init__()
|
1071 |
+
self.eps = eps
|
1072 |
+
self.weight = nn.Parameter(torch.ones(dim))
|
1073 |
+
|
1074 |
+
def _norm(self, x):
|
1075 |
+
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
|
1076 |
+
|
1077 |
+
def forward(self, x):
|
1078 |
+
if rms_norm is not None and x.is_cuda:
|
1079 |
+
return rms_norm(x, self.weight, self.eps)
|
1080 |
+
else:
|
1081 |
+
output = self._norm(x.float()).type_as(x)
|
1082 |
+
return output * self.weight
|
pytorch_model-00001-of-00002.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1a5979dce941fc12f841303087367d39fbd3e726227b85330bb2abdb7255781d
|
3 |
+
size 9969772092
|
pytorch_model-00002-of-00002.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:57967253f3d177b73af70eb6c56fc83072c56030f42041f0b20ca5c3be67dbda
|
3 |
+
size 5472963479
|
qwen_generation_utils.py
ADDED
@@ -0,0 +1,411 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Alibaba Cloud.
|
2 |
+
#
|
3 |
+
# This source code is licensed under the license found in the
|
4 |
+
# LICENSE file in the root directory of this source tree.
|
5 |
+
|
6 |
+
"""Generation support."""
|
7 |
+
|
8 |
+
from typing import Tuple, List, Union, Iterable
|
9 |
+
|
10 |
+
import numpy as np
|
11 |
+
import torch
|
12 |
+
import torch.nn.functional as F
|
13 |
+
from transformers import PreTrainedTokenizer
|
14 |
+
from transformers import logging
|
15 |
+
from transformers.generation import LogitsProcessor
|
16 |
+
|
17 |
+
logger = logging.get_logger(__name__)
|
18 |
+
|
19 |
+
# Types.
|
20 |
+
HistoryType = List[Tuple[str, str]]
|
21 |
+
TokensType = List[int]
|
22 |
+
BatchTokensType = List[List[int]]
|
23 |
+
|
24 |
+
|
25 |
+
def pad_batch(batch: BatchTokensType, pad_id: int, seq_length: int) -> BatchTokensType:
|
26 |
+
for tokens in batch:
|
27 |
+
context_length = len(tokens)
|
28 |
+
if context_length < seq_length:
|
29 |
+
tokens.extend([pad_id] * (seq_length - context_length))
|
30 |
+
return batch
|
31 |
+
|
32 |
+
|
33 |
+
def get_ltor_masks_and_position_ids(
|
34 |
+
data,
|
35 |
+
eod_token,
|
36 |
+
reset_position_ids,
|
37 |
+
reset_attention_mask,
|
38 |
+
eod_mask_loss,
|
39 |
+
):
|
40 |
+
"""Build masks and position id for left to right model."""
|
41 |
+
|
42 |
+
# Extract batch size and sequence length.
|
43 |
+
micro_batch_size, seq_length = data.size()
|
44 |
+
|
45 |
+
# Attention mask (lower triangular).
|
46 |
+
if reset_attention_mask:
|
47 |
+
att_mask_batch = micro_batch_size
|
48 |
+
else:
|
49 |
+
att_mask_batch = 1
|
50 |
+
attention_mask = torch.tril(
|
51 |
+
torch.ones((att_mask_batch, seq_length, seq_length), device=data.device)
|
52 |
+
).view(att_mask_batch, 1, seq_length, seq_length)
|
53 |
+
|
54 |
+
# Loss mask.
|
55 |
+
loss_mask = torch.ones(data.size(), dtype=torch.float, device=data.device)
|
56 |
+
if eod_mask_loss:
|
57 |
+
loss_mask[data == eod_token] = 0.0
|
58 |
+
|
59 |
+
# Position ids.
|
60 |
+
position_ids = torch.arange(seq_length, dtype=torch.long, device=data.device)
|
61 |
+
position_ids = position_ids.unsqueeze(0).expand_as(data)
|
62 |
+
# We need to clone as the ids will be modifed based on batch index.
|
63 |
+
if reset_position_ids:
|
64 |
+
position_ids = position_ids.clone()
|
65 |
+
|
66 |
+
if reset_position_ids or reset_attention_mask:
|
67 |
+
# Loop through the batches:
|
68 |
+
for b in range(micro_batch_size):
|
69 |
+
|
70 |
+
# Find indecies where EOD token is.
|
71 |
+
eod_index = position_ids[b, data[b] == eod_token]
|
72 |
+
# Detach indecies from positions if going to modify positions.
|
73 |
+
if reset_position_ids:
|
74 |
+
eod_index = eod_index.clone()
|
75 |
+
|
76 |
+
# Loop through EOD indecies:
|
77 |
+
prev_index = 0
|
78 |
+
for j in range(eod_index.size()[0]):
|
79 |
+
i = eod_index[j]
|
80 |
+
# Mask attention loss.
|
81 |
+
if reset_attention_mask:
|
82 |
+
attention_mask[b, 0, (i + 1) :, : (i + 1)] = 0
|
83 |
+
# Reset positions.
|
84 |
+
if reset_position_ids:
|
85 |
+
position_ids[b, (i + 1) :] -= i + 1 - prev_index
|
86 |
+
prev_index = i + 1
|
87 |
+
|
88 |
+
# Convert attention mask to binary:
|
89 |
+
attention_mask = attention_mask < 0.5
|
90 |
+
|
91 |
+
return attention_mask, loss_mask, position_ids
|
92 |
+
|
93 |
+
|
94 |
+
def get_batch(context_tokens: torch.LongTensor, eod_id: int):
|
95 |
+
"""Generate batch from context tokens."""
|
96 |
+
# Move to GPU.
|
97 |
+
tokens = context_tokens.contiguous().to(context_tokens.device)
|
98 |
+
# Get the attention mask and postition ids.
|
99 |
+
attention_mask, _, position_ids = get_ltor_masks_and_position_ids(
|
100 |
+
tokens,
|
101 |
+
eod_id,
|
102 |
+
reset_position_ids=False,
|
103 |
+
reset_attention_mask=False,
|
104 |
+
eod_mask_loss=False,
|
105 |
+
)
|
106 |
+
return tokens, attention_mask, position_ids
|
107 |
+
|
108 |
+
|
109 |
+
def get_stop_words_ids(chat_format, tokenizer):
|
110 |
+
if chat_format == "raw":
|
111 |
+
stop_words_ids = [tokenizer.encode("Human:"), [tokenizer.eod_id]]
|
112 |
+
elif chat_format == "chatml":
|
113 |
+
stop_words_ids = [[tokenizer.im_end_id], [tokenizer.im_start_id]]
|
114 |
+
else:
|
115 |
+
raise NotImplementedError(f"Unknown chat format {chat_format!r}")
|
116 |
+
return stop_words_ids
|
117 |
+
|
118 |
+
|
119 |
+
def make_context(
|
120 |
+
tokenizer: PreTrainedTokenizer,
|
121 |
+
query: str,
|
122 |
+
history: List[Tuple[str, str]] = None,
|
123 |
+
system: str = "",
|
124 |
+
max_window_size: int = 8192,
|
125 |
+
chat_format: str = "chatml",
|
126 |
+
):
|
127 |
+
if history is None:
|
128 |
+
history = []
|
129 |
+
|
130 |
+
if chat_format == "chatml":
|
131 |
+
im_start, im_end = "<|im_start|>", "<|im_end|>"
|
132 |
+
im_start_tokens = [tokenizer.im_start_id]
|
133 |
+
im_end_tokens = [tokenizer.im_end_id]
|
134 |
+
nl_tokens = tokenizer.encode("\n")
|
135 |
+
|
136 |
+
def _tokenize_str(role, content):
|
137 |
+
return f"{role}\n{content}", tokenizer.encode(
|
138 |
+
role
|
139 |
+
) + nl_tokens + tokenizer.encode(content)
|
140 |
+
|
141 |
+
system_text, system_tokens_part = _tokenize_str("system", system)
|
142 |
+
system_tokens = im_start_tokens + system_tokens_part + im_end_tokens
|
143 |
+
|
144 |
+
raw_text = ""
|
145 |
+
context_tokens = []
|
146 |
+
|
147 |
+
for turn_query, turn_response in reversed(history):
|
148 |
+
query_text, query_tokens_part = _tokenize_str("user", turn_query)
|
149 |
+
query_tokens = im_start_tokens + query_tokens_part + im_end_tokens
|
150 |
+
response_text, response_tokens_part = _tokenize_str(
|
151 |
+
"assistant", turn_response
|
152 |
+
)
|
153 |
+
response_tokens = im_start_tokens + response_tokens_part + im_end_tokens
|
154 |
+
|
155 |
+
next_context_tokens = nl_tokens + query_tokens + nl_tokens + response_tokens
|
156 |
+
prev_chat = (
|
157 |
+
f"\n{im_start}{query_text}{im_end}\n{im_start}{response_text}{im_end}"
|
158 |
+
)
|
159 |
+
|
160 |
+
current_context_size = (
|
161 |
+
len(system_tokens) + len(next_context_tokens) + len(context_tokens)
|
162 |
+
)
|
163 |
+
if current_context_size < max_window_size:
|
164 |
+
context_tokens = next_context_tokens + context_tokens
|
165 |
+
raw_text = prev_chat + raw_text
|
166 |
+
else:
|
167 |
+
break
|
168 |
+
|
169 |
+
context_tokens = system_tokens + context_tokens
|
170 |
+
raw_text = f"{im_start}{system_text}{im_end}" + raw_text
|
171 |
+
context_tokens += (
|
172 |
+
nl_tokens
|
173 |
+
+ im_start_tokens
|
174 |
+
+ _tokenize_str("user", query)[1]
|
175 |
+
+ im_end_tokens
|
176 |
+
+ nl_tokens
|
177 |
+
+ im_start_tokens
|
178 |
+
+ tokenizer.encode("assistant")
|
179 |
+
+ nl_tokens
|
180 |
+
)
|
181 |
+
raw_text += f"\n{im_start}user\n{query}{im_end}\n{im_start}assistant\n"
|
182 |
+
|
183 |
+
elif chat_format == "raw":
|
184 |
+
raw_text = query
|
185 |
+
context_tokens = tokenizer.encode(raw_text)
|
186 |
+
else:
|
187 |
+
raise NotImplementedError(f"Unknown chat format {chat_format!r}")
|
188 |
+
|
189 |
+
return raw_text, context_tokens
|
190 |
+
|
191 |
+
|
192 |
+
def _decode_default(
|
193 |
+
tokens: List[int],
|
194 |
+
*,
|
195 |
+
stop_words: List[str],
|
196 |
+
eod_words: List[str],
|
197 |
+
tokenizer: PreTrainedTokenizer,
|
198 |
+
raw_text_len: int,
|
199 |
+
verbose: bool = False,
|
200 |
+
return_end_reason: bool = False,
|
201 |
+
):
|
202 |
+
trim_decode_tokens = tokenizer.decode(tokens)[raw_text_len:]
|
203 |
+
if verbose:
|
204 |
+
print("\nRaw Generate: ", trim_decode_tokens)
|
205 |
+
|
206 |
+
end_reason = f"Gen length {len(tokens)}"
|
207 |
+
for stop_word in stop_words:
|
208 |
+
trim_decode_tokens = trim_decode_tokens.replace(stop_word, "").strip()
|
209 |
+
for eod_word in eod_words:
|
210 |
+
if eod_word in trim_decode_tokens:
|
211 |
+
end_reason = f"Gen {eod_word!r}"
|
212 |
+
trim_decode_tokens = trim_decode_tokens.split(eod_word)[0]
|
213 |
+
trim_decode_tokens = trim_decode_tokens.strip()
|
214 |
+
if verbose:
|
215 |
+
print("\nEnd Reason:", end_reason)
|
216 |
+
print("\nGenerate: ", trim_decode_tokens)
|
217 |
+
|
218 |
+
if return_end_reason:
|
219 |
+
return trim_decode_tokens, end_reason
|
220 |
+
else:
|
221 |
+
return trim_decode_tokens
|
222 |
+
|
223 |
+
|
224 |
+
def _decode_chatml(
|
225 |
+
tokens: List[int],
|
226 |
+
*,
|
227 |
+
stop_words: List[str],
|
228 |
+
eod_token_ids: List[int],
|
229 |
+
tokenizer: PreTrainedTokenizer,
|
230 |
+
raw_text_len: int,
|
231 |
+
context_length: int,
|
232 |
+
verbose: bool = False,
|
233 |
+
return_end_reason: bool = False,
|
234 |
+
):
|
235 |
+
end_reason = f"Gen length {len(tokens)}"
|
236 |
+
eod_token_idx = context_length
|
237 |
+
for eod_token_idx in range(context_length, len(tokens)):
|
238 |
+
if tokens[eod_token_idx] in eod_token_ids:
|
239 |
+
end_reason = f"Gen {tokenizer.decode([tokens[eod_token_idx]])!r}"
|
240 |
+
break
|
241 |
+
|
242 |
+
trim_decode_tokens = tokenizer.decode(tokens[:eod_token_idx])[raw_text_len:]
|
243 |
+
if verbose:
|
244 |
+
print("\nRaw Generate w/o EOD:", tokenizer.decode(tokens)[raw_text_len:])
|
245 |
+
print("\nRaw Generate:", trim_decode_tokens)
|
246 |
+
print("\nEnd Reason:", end_reason)
|
247 |
+
for stop_word in stop_words:
|
248 |
+
trim_decode_tokens = trim_decode_tokens.replace(stop_word, "").strip()
|
249 |
+
trim_decode_tokens = trim_decode_tokens.strip()
|
250 |
+
if verbose:
|
251 |
+
print("\nGenerate:", trim_decode_tokens)
|
252 |
+
|
253 |
+
if return_end_reason:
|
254 |
+
return trim_decode_tokens, end_reason
|
255 |
+
else:
|
256 |
+
return trim_decode_tokens
|
257 |
+
|
258 |
+
|
259 |
+
def decode_tokens(
|
260 |
+
tokens: Union[torch.LongTensor, TokensType],
|
261 |
+
tokenizer: PreTrainedTokenizer,
|
262 |
+
raw_text_len: int,
|
263 |
+
context_length: int,
|
264 |
+
chat_format: str,
|
265 |
+
verbose: bool = False,
|
266 |
+
return_end_reason: bool = False,
|
267 |
+
) -> str:
|
268 |
+
if torch.is_tensor(tokens):
|
269 |
+
tokens = tokens.cpu().numpy().tolist()
|
270 |
+
|
271 |
+
if chat_format == "chatml":
|
272 |
+
return _decode_chatml(
|
273 |
+
tokens,
|
274 |
+
stop_words=[],
|
275 |
+
eod_token_ids=[tokenizer.im_start_id, tokenizer.im_end_id],
|
276 |
+
tokenizer=tokenizer,
|
277 |
+
raw_text_len=raw_text_len,
|
278 |
+
context_length=context_length,
|
279 |
+
verbose=verbose,
|
280 |
+
return_end_reason=return_end_reason,
|
281 |
+
)
|
282 |
+
elif chat_format == "raw":
|
283 |
+
return _decode_default(
|
284 |
+
tokens,
|
285 |
+
stop_words=["<|endoftext|>"],
|
286 |
+
eod_words=["<|endoftext|>"],
|
287 |
+
tokenizer=tokenizer,
|
288 |
+
raw_text_len=raw_text_len,
|
289 |
+
verbose=verbose,
|
290 |
+
return_end_reason=return_end_reason,
|
291 |
+
)
|
292 |
+
else:
|
293 |
+
raise NotImplementedError(f"Unknown chat format {chat_format!r}")
|
294 |
+
|
295 |
+
|
296 |
+
class StopWordsLogitsProcessor(LogitsProcessor):
|
297 |
+
"""
|
298 |
+
:class:`transformers.LogitsProcessor` that enforces that when specified sequences appear, stop geration.
|
299 |
+
|
300 |
+
Args:
|
301 |
+
stop_words_ids (:obj:`List[List[int]]`):
|
302 |
+
List of list of token ids of stop ids. In order to get the tokens of the words
|
303 |
+
that should not appear in the generated text, use :obj:`tokenizer(bad_word,
|
304 |
+
add_prefix_space=True).input_ids`.
|
305 |
+
eos_token_id (:obj:`int`):
|
306 |
+
The id of the `end-of-sequence` token.
|
307 |
+
"""
|
308 |
+
|
309 |
+
def __init__(self, stop_words_ids: Iterable[Iterable[int]], eos_token_id: int):
|
310 |
+
|
311 |
+
if not isinstance(stop_words_ids, List) or len(stop_words_ids) == 0:
|
312 |
+
raise ValueError(
|
313 |
+
f"`stop_words_ids` has to be a non-emtpy list, but is {stop_words_ids}."
|
314 |
+
)
|
315 |
+
if any(not isinstance(bad_word_ids, list) for bad_word_ids in stop_words_ids):
|
316 |
+
raise ValueError(
|
317 |
+
f"`stop_words_ids` has to be a list of lists, but is {stop_words_ids}."
|
318 |
+
)
|
319 |
+
if any(
|
320 |
+
any(
|
321 |
+
(not isinstance(token_id, (int, np.integer)) or token_id < 0)
|
322 |
+
for token_id in stop_word_ids
|
323 |
+
)
|
324 |
+
for stop_word_ids in stop_words_ids
|
325 |
+
):
|
326 |
+
raise ValueError(
|
327 |
+
f"Each list in `stop_words_ids` has to be a list of positive integers, but is {stop_words_ids}."
|
328 |
+
)
|
329 |
+
|
330 |
+
self.stop_words_ids = list(
|
331 |
+
filter(
|
332 |
+
lambda bad_token_seq: bad_token_seq != [eos_token_id], stop_words_ids
|
333 |
+
)
|
334 |
+
)
|
335 |
+
self.eos_token_id = eos_token_id
|
336 |
+
for stop_token_seq in self.stop_words_ids:
|
337 |
+
assert (
|
338 |
+
len(stop_token_seq) > 0
|
339 |
+
), "Stop words token sequences {} cannot have an empty list".format(
|
340 |
+
stop_words_ids
|
341 |
+
)
|
342 |
+
|
343 |
+
def __call__(
|
344 |
+
self, input_ids: torch.LongTensor, scores: torch.FloatTensor
|
345 |
+
) -> torch.FloatTensor:
|
346 |
+
stopped_samples = self._calc_stopped_samples(input_ids)
|
347 |
+
for i, should_stop in enumerate(stopped_samples):
|
348 |
+
if should_stop:
|
349 |
+
scores[i, self.eos_token_id] = float(2**15)
|
350 |
+
return scores
|
351 |
+
|
352 |
+
def _tokens_match(self, prev_tokens: torch.LongTensor, tokens: List[int]) -> bool:
|
353 |
+
if len(tokens) == 0:
|
354 |
+
# if bad word tokens is just one token always ban it
|
355 |
+
return True
|
356 |
+
elif len(tokens) > len(prev_tokens):
|
357 |
+
# if bad word tokens are longer then prev input_ids they can't be equal
|
358 |
+
return False
|
359 |
+
elif prev_tokens[-len(tokens) :].tolist() == tokens:
|
360 |
+
# if tokens match
|
361 |
+
return True
|
362 |
+
else:
|
363 |
+
return False
|
364 |
+
|
365 |
+
def _calc_stopped_samples(self, prev_input_ids: Iterable[int]) -> Iterable[int]:
|
366 |
+
stopped_samples = []
|
367 |
+
for prev_input_ids_slice in prev_input_ids:
|
368 |
+
match = False
|
369 |
+
for stop_token_seq in self.stop_words_ids:
|
370 |
+
if self._tokens_match(prev_input_ids_slice, stop_token_seq):
|
371 |
+
# if tokens do not match continue
|
372 |
+
match = True
|
373 |
+
break
|
374 |
+
stopped_samples.append(match)
|
375 |
+
|
376 |
+
return stopped_samples
|
377 |
+
|
378 |
+
|
379 |
+
def top_k_logits(logits, top_k=0, top_p=0.0, filter_value=-float("Inf")):
|
380 |
+
"""This function has been mostly taken from huggingface conversational
|
381 |
+
ai code at
|
382 |
+
https://medium.com/huggingface/how-to-build-a-state-of-the-art-
|
383 |
+
conversational-ai-with-transfer-learning-2d818ac26313"""
|
384 |
+
|
385 |
+
if top_k > 0:
|
386 |
+
# Remove all tokens with a probability less than the
|
387 |
+
# last token of the top-k
|
388 |
+
indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None]
|
389 |
+
logits[indices_to_remove] = filter_value
|
390 |
+
|
391 |
+
if top_p > 0.0:
|
392 |
+
# Cconvert to 1D
|
393 |
+
sorted_logits, sorted_indices = torch.sort(logits, descending=True, dim=-1)
|
394 |
+
cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)
|
395 |
+
|
396 |
+
# Remove tokens with cumulative probability above the threshold
|
397 |
+
sorted_indices_to_remove = cumulative_probs > top_p
|
398 |
+
# Shift the indices to the right to keep also the first token
|
399 |
+
# above the threshold
|
400 |
+
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
|
401 |
+
sorted_indices_to_remove[..., 0] = 0
|
402 |
+
for i in range(sorted_indices.size(0)):
|
403 |
+
indices_to_remove = sorted_indices[i][sorted_indices_to_remove[i]]
|
404 |
+
logits[i][indices_to_remove] = filter_value
|
405 |
+
|
406 |
+
return logits
|
407 |
+
|
408 |
+
|
409 |
+
def switch(val1, val2, boolean):
|
410 |
+
boolean = boolean.type_as(val1)
|
411 |
+
return (1 - boolean) * val1 + boolean * val2
|
special_tokens_map.json
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": "<|endoftext|>",
|
3 |
+
"eos_token": "<|endoftext|>",
|
4 |
+
"unk_token": "<|endoftext|>"
|
5 |
+
}
|
tokenizer_config.json
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": false,
|
3 |
+
"add_prefix_space": false,
|
4 |
+
"bos_token": {
|
5 |
+
"__type": "AddedToken",
|
6 |
+
"content": "<|endoftext|>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": true,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false
|
11 |
+
},
|
12 |
+
"clean_up_tokenization_spaces": true,
|
13 |
+
"eos_token": {
|
14 |
+
"__type": "AddedToken",
|
15 |
+
"content": "<|endoftext|>",
|
16 |
+
"lstrip": false,
|
17 |
+
"normalized": true,
|
18 |
+
"rstrip": false,
|
19 |
+
"single_word": false
|
20 |
+
},
|
21 |
+
"errors": "replace",
|
22 |
+
"model_max_length": 8192,
|
23 |
+
"pad_token": null,
|
24 |
+
"padding_side": "left",
|
25 |
+
"tokenizer_class": "GPT2Tokenizer",
|
26 |
+
"unk_token": {
|
27 |
+
"__type": "AddedToken",
|
28 |
+
"content": "<|endoftext|>",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": true,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false
|
33 |
+
}
|
34 |
+
}
|
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|