|
from u2net.u2net_inference import get_u2net_model, get_saliency_mask |
|
|
|
import numpy as np |
|
from PIL import Image |
|
import matplotlib.pyplot as plt |
|
|
|
from pathlib import Path |
|
import matplotlib.pyplot as plt |
|
import numpy as np |
|
import gradio as gr |
|
|
|
print('Loading model...') |
|
model = get_u2net_model() |
|
print('Successfully loaded model...') |
|
examples = ['examples/1.jpg', 'examples/2.jpg', 'examples/3.jpg', 'examples/4.jpg','examples/5.jpg','examples/6.jpg'] |
|
|
|
|
|
def infer(image): |
|
image_out = get_saliency_mask(model, image) |
|
return image_out |
|
|
|
|
|
iface = gr.Interface( |
|
fn=infer, |
|
title="U^2Net Based Saliency Estimatiion", |
|
description = "U^2Net Saliency Estimation", |
|
inputs=[gr.Image(label="image", type="numpy", shape=(640, 480))], |
|
outputs="image", |
|
cache_examples=True, |
|
examples=examples).launch(debug=True) |
|
|