reeteshmukul
commited on
Commit
·
ab44973
1
Parent(s):
2ef33f0
removing unnecessary files for modelcard
Browse files- README.md +0 -6
- app.py +0 -30
- requirements.txt +0 -1
- samples/1.jpg +0 -0
- samples/6.jpg +0 -0
- u2net.ipynb +0 -0
- u2net/__init__.py +0 -0
- u2net/data_loader.py +0 -266
- u2net/u2net.py +0 -525
- u2net/u2net_inference.py +0 -100
README.md
CHANGED
@@ -1,10 +1,4 @@
|
|
1 |
---
|
2 |
title: Saliency Estimation
|
3 |
-
emoji: 🌖
|
4 |
-
colorFrom: indigo
|
5 |
-
colorTo: green
|
6 |
-
sdk: gradio
|
7 |
-
app_file: app.py
|
8 |
-
pinned: false
|
9 |
---
|
10 |
|
|
|
1 |
---
|
2 |
title: Saliency Estimation
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
4 |
|
app.py
DELETED
@@ -1,30 +0,0 @@
|
|
1 |
-
from u2net.u2net_inference import get_u2net_model, get_saliency_mask
|
2 |
-
|
3 |
-
import numpy as np
|
4 |
-
from PIL import Image
|
5 |
-
import matplotlib.pyplot as plt
|
6 |
-
|
7 |
-
from pathlib import Path
|
8 |
-
import matplotlib.pyplot as plt
|
9 |
-
import numpy as np
|
10 |
-
import gradio as gr
|
11 |
-
|
12 |
-
print('Loading model...')
|
13 |
-
model = get_u2net_model()
|
14 |
-
print('Successfully loaded model...')
|
15 |
-
examples = ['examples/1.jpg', 'examples/6.jpg']
|
16 |
-
|
17 |
-
|
18 |
-
def infer(image):
|
19 |
-
image_out = get_saliency_mask(model, image)
|
20 |
-
return image_out
|
21 |
-
|
22 |
-
|
23 |
-
iface = gr.Interface(
|
24 |
-
fn=infer,
|
25 |
-
title="U^2Net Based Saliency Estimatiion",
|
26 |
-
description = "U^2Net Saliency Estimation",
|
27 |
-
inputs=[gr.Image(label="image", type="numpy", shape=(640, 480))],
|
28 |
-
outputs="image",
|
29 |
-
cache_examples=True,
|
30 |
-
examples=examples).launch(debug=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
requirements.txt
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
torch
|
|
|
|
samples/1.jpg
DELETED
Binary file (62.7 kB)
|
|
samples/6.jpg
DELETED
Binary file (105 kB)
|
|
u2net.ipynb
DELETED
The diff for this file is too large to render.
See raw diff
|
|
u2net/__init__.py
DELETED
File without changes
|
u2net/data_loader.py
DELETED
@@ -1,266 +0,0 @@
|
|
1 |
-
# data loader
|
2 |
-
from __future__ import print_function, division
|
3 |
-
import glob
|
4 |
-
import torch
|
5 |
-
from skimage import io, transform, color
|
6 |
-
import numpy as np
|
7 |
-
import random
|
8 |
-
import math
|
9 |
-
import matplotlib.pyplot as plt
|
10 |
-
from torch.utils.data import Dataset, DataLoader
|
11 |
-
from torchvision import transforms, utils
|
12 |
-
from PIL import Image
|
13 |
-
|
14 |
-
#==========================dataset load==========================
|
15 |
-
class RescaleT(object):
|
16 |
-
|
17 |
-
def __init__(self,output_size):
|
18 |
-
assert isinstance(output_size,(int,tuple))
|
19 |
-
self.output_size = output_size
|
20 |
-
|
21 |
-
def __call__(self,sample):
|
22 |
-
imidx, image, label = sample['imidx'], sample['image'],sample['label']
|
23 |
-
|
24 |
-
h, w = image.shape[:2]
|
25 |
-
|
26 |
-
if isinstance(self.output_size,int):
|
27 |
-
if h > w:
|
28 |
-
new_h, new_w = self.output_size*h/w,self.output_size
|
29 |
-
else:
|
30 |
-
new_h, new_w = self.output_size,self.output_size*w/h
|
31 |
-
else:
|
32 |
-
new_h, new_w = self.output_size
|
33 |
-
|
34 |
-
new_h, new_w = int(new_h), int(new_w)
|
35 |
-
|
36 |
-
# #resize the image to new_h x new_w and convert image from range [0,255] to [0,1]
|
37 |
-
# img = transform.resize(image,(new_h,new_w),mode='constant')
|
38 |
-
# lbl = transform.resize(label,(new_h,new_w),mode='constant', order=0, preserve_range=True)
|
39 |
-
|
40 |
-
img = transform.resize(image,(self.output_size,self.output_size),mode='constant')
|
41 |
-
lbl = transform.resize(label,(self.output_size,self.output_size),mode='constant', order=0, preserve_range=True)
|
42 |
-
|
43 |
-
return {'imidx':imidx, 'image':img,'label':lbl}
|
44 |
-
|
45 |
-
class Rescale(object):
|
46 |
-
|
47 |
-
def __init__(self,output_size):
|
48 |
-
assert isinstance(output_size,(int,tuple))
|
49 |
-
self.output_size = output_size
|
50 |
-
|
51 |
-
def __call__(self,sample):
|
52 |
-
imidx, image, label = sample['imidx'], sample['image'],sample['label']
|
53 |
-
|
54 |
-
if random.random() >= 0.5:
|
55 |
-
image = image[::-1]
|
56 |
-
label = label[::-1]
|
57 |
-
|
58 |
-
h, w = image.shape[:2]
|
59 |
-
|
60 |
-
if isinstance(self.output_size,int):
|
61 |
-
if h > w:
|
62 |
-
new_h, new_w = self.output_size*h/w,self.output_size
|
63 |
-
else:
|
64 |
-
new_h, new_w = self.output_size,self.output_size*w/h
|
65 |
-
else:
|
66 |
-
new_h, new_w = self.output_size
|
67 |
-
|
68 |
-
new_h, new_w = int(new_h), int(new_w)
|
69 |
-
|
70 |
-
# #resize the image to new_h x new_w and convert image from range [0,255] to [0,1]
|
71 |
-
img = transform.resize(image,(new_h,new_w),mode='constant')
|
72 |
-
lbl = transform.resize(label,(new_h,new_w),mode='constant', order=0, preserve_range=True)
|
73 |
-
|
74 |
-
return {'imidx':imidx, 'image':img,'label':lbl}
|
75 |
-
|
76 |
-
class RandomCrop(object):
|
77 |
-
|
78 |
-
def __init__(self,output_size):
|
79 |
-
assert isinstance(output_size, (int, tuple))
|
80 |
-
if isinstance(output_size, int):
|
81 |
-
self.output_size = (output_size, output_size)
|
82 |
-
else:
|
83 |
-
assert len(output_size) == 2
|
84 |
-
self.output_size = output_size
|
85 |
-
def __call__(self,sample):
|
86 |
-
imidx, image, label = sample['imidx'], sample['image'], sample['label']
|
87 |
-
|
88 |
-
if random.random() >= 0.5:
|
89 |
-
image = image[::-1]
|
90 |
-
label = label[::-1]
|
91 |
-
|
92 |
-
h, w = image.shape[:2]
|
93 |
-
new_h, new_w = self.output_size
|
94 |
-
|
95 |
-
top = np.random.randint(0, h - new_h)
|
96 |
-
left = np.random.randint(0, w - new_w)
|
97 |
-
|
98 |
-
image = image[top: top + new_h, left: left + new_w]
|
99 |
-
label = label[top: top + new_h, left: left + new_w]
|
100 |
-
|
101 |
-
return {'imidx':imidx,'image':image, 'label':label}
|
102 |
-
|
103 |
-
class ToTensor(object):
|
104 |
-
"""Convert ndarrays in sample to Tensors."""
|
105 |
-
|
106 |
-
def __call__(self, sample):
|
107 |
-
|
108 |
-
imidx, image, label = sample['imidx'], sample['image'], sample['label']
|
109 |
-
|
110 |
-
tmpImg = np.zeros((image.shape[0],image.shape[1],3))
|
111 |
-
tmpLbl = np.zeros(label.shape)
|
112 |
-
|
113 |
-
image = image/np.max(image)
|
114 |
-
if(np.max(label)<1e-6):
|
115 |
-
label = label
|
116 |
-
else:
|
117 |
-
label = label/np.max(label)
|
118 |
-
|
119 |
-
if image.shape[2]==1:
|
120 |
-
tmpImg[:,:,0] = (image[:,:,0]-0.485)/0.229
|
121 |
-
tmpImg[:,:,1] = (image[:,:,0]-0.485)/0.229
|
122 |
-
tmpImg[:,:,2] = (image[:,:,0]-0.485)/0.229
|
123 |
-
else:
|
124 |
-
tmpImg[:,:,0] = (image[:,:,0]-0.485)/0.229
|
125 |
-
tmpImg[:,:,1] = (image[:,:,1]-0.456)/0.224
|
126 |
-
tmpImg[:,:,2] = (image[:,:,2]-0.406)/0.225
|
127 |
-
|
128 |
-
tmpLbl[:,:,0] = label[:,:,0]
|
129 |
-
|
130 |
-
|
131 |
-
tmpImg = tmpImg.transpose((2, 0, 1))
|
132 |
-
tmpLbl = label.transpose((2, 0, 1))
|
133 |
-
|
134 |
-
return {'imidx':torch.from_numpy(imidx), 'image': torch.from_numpy(tmpImg), 'label': torch.from_numpy(tmpLbl)}
|
135 |
-
|
136 |
-
class ToTensorLab(object):
|
137 |
-
"""Convert ndarrays in sample to Tensors."""
|
138 |
-
def __init__(self,flag=0):
|
139 |
-
self.flag = flag
|
140 |
-
|
141 |
-
def __call__(self, sample):
|
142 |
-
|
143 |
-
imidx, image, label =sample['imidx'], sample['image'], sample['label']
|
144 |
-
|
145 |
-
tmpLbl = np.zeros(label.shape)
|
146 |
-
|
147 |
-
if(np.max(label)<1e-6):
|
148 |
-
label = label
|
149 |
-
else:
|
150 |
-
label = label/np.max(label)
|
151 |
-
|
152 |
-
# change the color space
|
153 |
-
if self.flag == 2: # with rgb and Lab colors
|
154 |
-
tmpImg = np.zeros((image.shape[0],image.shape[1],6))
|
155 |
-
tmpImgt = np.zeros((image.shape[0],image.shape[1],3))
|
156 |
-
if image.shape[2]==1:
|
157 |
-
tmpImgt[:,:,0] = image[:,:,0]
|
158 |
-
tmpImgt[:,:,1] = image[:,:,0]
|
159 |
-
tmpImgt[:,:,2] = image[:,:,0]
|
160 |
-
else:
|
161 |
-
tmpImgt = image
|
162 |
-
tmpImgtl = color.rgb2lab(tmpImgt)
|
163 |
-
|
164 |
-
# nomalize image to range [0,1]
|
165 |
-
tmpImg[:,:,0] = (tmpImgt[:,:,0]-np.min(tmpImgt[:,:,0]))/(np.max(tmpImgt[:,:,0])-np.min(tmpImgt[:,:,0]))
|
166 |
-
tmpImg[:,:,1] = (tmpImgt[:,:,1]-np.min(tmpImgt[:,:,1]))/(np.max(tmpImgt[:,:,1])-np.min(tmpImgt[:,:,1]))
|
167 |
-
tmpImg[:,:,2] = (tmpImgt[:,:,2]-np.min(tmpImgt[:,:,2]))/(np.max(tmpImgt[:,:,2])-np.min(tmpImgt[:,:,2]))
|
168 |
-
tmpImg[:,:,3] = (tmpImgtl[:,:,0]-np.min(tmpImgtl[:,:,0]))/(np.max(tmpImgtl[:,:,0])-np.min(tmpImgtl[:,:,0]))
|
169 |
-
tmpImg[:,:,4] = (tmpImgtl[:,:,1]-np.min(tmpImgtl[:,:,1]))/(np.max(tmpImgtl[:,:,1])-np.min(tmpImgtl[:,:,1]))
|
170 |
-
tmpImg[:,:,5] = (tmpImgtl[:,:,2]-np.min(tmpImgtl[:,:,2]))/(np.max(tmpImgtl[:,:,2])-np.min(tmpImgtl[:,:,2]))
|
171 |
-
|
172 |
-
# tmpImg = tmpImg/(np.max(tmpImg)-np.min(tmpImg))
|
173 |
-
|
174 |
-
tmpImg[:,:,0] = (tmpImg[:,:,0]-np.mean(tmpImg[:,:,0]))/np.std(tmpImg[:,:,0])
|
175 |
-
tmpImg[:,:,1] = (tmpImg[:,:,1]-np.mean(tmpImg[:,:,1]))/np.std(tmpImg[:,:,1])
|
176 |
-
tmpImg[:,:,2] = (tmpImg[:,:,2]-np.mean(tmpImg[:,:,2]))/np.std(tmpImg[:,:,2])
|
177 |
-
tmpImg[:,:,3] = (tmpImg[:,:,3]-np.mean(tmpImg[:,:,3]))/np.std(tmpImg[:,:,3])
|
178 |
-
tmpImg[:,:,4] = (tmpImg[:,:,4]-np.mean(tmpImg[:,:,4]))/np.std(tmpImg[:,:,4])
|
179 |
-
tmpImg[:,:,5] = (tmpImg[:,:,5]-np.mean(tmpImg[:,:,5]))/np.std(tmpImg[:,:,5])
|
180 |
-
|
181 |
-
elif self.flag == 1: #with Lab color
|
182 |
-
tmpImg = np.zeros((image.shape[0],image.shape[1],3))
|
183 |
-
|
184 |
-
if image.shape[2]==1:
|
185 |
-
tmpImg[:,:,0] = image[:,:,0]
|
186 |
-
tmpImg[:,:,1] = image[:,:,0]
|
187 |
-
tmpImg[:,:,2] = image[:,:,0]
|
188 |
-
else:
|
189 |
-
tmpImg = image
|
190 |
-
|
191 |
-
tmpImg = color.rgb2lab(tmpImg)
|
192 |
-
|
193 |
-
# tmpImg = tmpImg/(np.max(tmpImg)-np.min(tmpImg))
|
194 |
-
|
195 |
-
tmpImg[:,:,0] = (tmpImg[:,:,0]-np.min(tmpImg[:,:,0]))/(np.max(tmpImg[:,:,0])-np.min(tmpImg[:,:,0]))
|
196 |
-
tmpImg[:,:,1] = (tmpImg[:,:,1]-np.min(tmpImg[:,:,1]))/(np.max(tmpImg[:,:,1])-np.min(tmpImg[:,:,1]))
|
197 |
-
tmpImg[:,:,2] = (tmpImg[:,:,2]-np.min(tmpImg[:,:,2]))/(np.max(tmpImg[:,:,2])-np.min(tmpImg[:,:,2]))
|
198 |
-
|
199 |
-
tmpImg[:,:,0] = (tmpImg[:,:,0]-np.mean(tmpImg[:,:,0]))/np.std(tmpImg[:,:,0])
|
200 |
-
tmpImg[:,:,1] = (tmpImg[:,:,1]-np.mean(tmpImg[:,:,1]))/np.std(tmpImg[:,:,1])
|
201 |
-
tmpImg[:,:,2] = (tmpImg[:,:,2]-np.mean(tmpImg[:,:,2]))/np.std(tmpImg[:,:,2])
|
202 |
-
|
203 |
-
else: # with rgb color
|
204 |
-
tmpImg = np.zeros((image.shape[0],image.shape[1],3))
|
205 |
-
image = image/np.max(image)
|
206 |
-
if image.shape[2]==1:
|
207 |
-
tmpImg[:,:,0] = (image[:,:,0]-0.485)/0.229
|
208 |
-
tmpImg[:,:,1] = (image[:,:,0]-0.485)/0.229
|
209 |
-
tmpImg[:,:,2] = (image[:,:,0]-0.485)/0.229
|
210 |
-
else:
|
211 |
-
tmpImg[:,:,0] = (image[:,:,0]-0.485)/0.229
|
212 |
-
tmpImg[:,:,1] = (image[:,:,1]-0.456)/0.224
|
213 |
-
tmpImg[:,:,2] = (image[:,:,2]-0.406)/0.225
|
214 |
-
|
215 |
-
tmpLbl[:,:,0] = label[:,:,0]
|
216 |
-
|
217 |
-
|
218 |
-
tmpImg = tmpImg.transpose((2, 0, 1))
|
219 |
-
tmpLbl = label.transpose((2, 0, 1))
|
220 |
-
|
221 |
-
return {'imidx':torch.from_numpy(imidx), 'image': torch.from_numpy(tmpImg), 'label': torch.from_numpy(tmpLbl)}
|
222 |
-
|
223 |
-
class SalObjDataset(Dataset):
|
224 |
-
def __init__(self,img_name_list,lbl_name_list,transform=None):
|
225 |
-
# self.root_dir = root_dir
|
226 |
-
# self.image_name_list = glob.glob(image_dir+'*.png')
|
227 |
-
# self.label_name_list = glob.glob(label_dir+'*.png')
|
228 |
-
self.image_name_list = img_name_list
|
229 |
-
self.label_name_list = lbl_name_list
|
230 |
-
self.transform = transform
|
231 |
-
|
232 |
-
def __len__(self):
|
233 |
-
return len(self.image_name_list)
|
234 |
-
|
235 |
-
def __getitem__(self,idx):
|
236 |
-
|
237 |
-
# image = Image.open(self.image_name_list[idx])#io.imread(self.image_name_list[idx])
|
238 |
-
# label = Image.open(self.label_name_list[idx])#io.imread(self.label_name_list[idx])
|
239 |
-
|
240 |
-
image = io.imread(self.image_name_list[idx])
|
241 |
-
imname = self.image_name_list[idx]
|
242 |
-
imidx = np.array([idx])
|
243 |
-
|
244 |
-
if(0==len(self.label_name_list)):
|
245 |
-
label_3 = np.zeros(image.shape)
|
246 |
-
else:
|
247 |
-
label_3 = io.imread(self.label_name_list[idx])
|
248 |
-
|
249 |
-
label = np.zeros(label_3.shape[0:2])
|
250 |
-
if(3==len(label_3.shape)):
|
251 |
-
label = label_3[:,:,0]
|
252 |
-
elif(2==len(label_3.shape)):
|
253 |
-
label = label_3
|
254 |
-
|
255 |
-
if(3==len(image.shape) and 2==len(label.shape)):
|
256 |
-
label = label[:,:,np.newaxis]
|
257 |
-
elif(2==len(image.shape) and 2==len(label.shape)):
|
258 |
-
image = image[:,:,np.newaxis]
|
259 |
-
label = label[:,:,np.newaxis]
|
260 |
-
|
261 |
-
sample = {'imidx':imidx, 'image':image, 'label':label}
|
262 |
-
|
263 |
-
if self.transform:
|
264 |
-
sample = self.transform(sample)
|
265 |
-
|
266 |
-
return sample
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
u2net/u2net.py
DELETED
@@ -1,525 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
import torch.nn as nn
|
3 |
-
import torch.nn.functional as F
|
4 |
-
|
5 |
-
class REBNCONV(nn.Module):
|
6 |
-
def __init__(self,in_ch=3,out_ch=3,dirate=1):
|
7 |
-
super(REBNCONV,self).__init__()
|
8 |
-
|
9 |
-
self.conv_s1 = nn.Conv2d(in_ch,out_ch,3,padding=1*dirate,dilation=1*dirate)
|
10 |
-
self.bn_s1 = nn.BatchNorm2d(out_ch)
|
11 |
-
self.relu_s1 = nn.ReLU(inplace=True)
|
12 |
-
|
13 |
-
def forward(self,x):
|
14 |
-
|
15 |
-
hx = x
|
16 |
-
xout = self.relu_s1(self.bn_s1(self.conv_s1(hx)))
|
17 |
-
|
18 |
-
return xout
|
19 |
-
|
20 |
-
## upsample tensor 'src' to have the same spatial size with tensor 'tar'
|
21 |
-
def _upsample_like(src,tar):
|
22 |
-
|
23 |
-
src = F.interpolate(src,size=tar.shape[2:],mode='bilinear')
|
24 |
-
|
25 |
-
return src
|
26 |
-
|
27 |
-
|
28 |
-
### RSU-7 ###
|
29 |
-
class RSU7(nn.Module):#UNet07DRES(nn.Module):
|
30 |
-
|
31 |
-
def __init__(self, in_ch=3, mid_ch=12, out_ch=3):
|
32 |
-
super(RSU7,self).__init__()
|
33 |
-
|
34 |
-
self.rebnconvin = REBNCONV(in_ch,out_ch,dirate=1)
|
35 |
-
|
36 |
-
self.rebnconv1 = REBNCONV(out_ch,mid_ch,dirate=1)
|
37 |
-
self.pool1 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
38 |
-
|
39 |
-
self.rebnconv2 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
40 |
-
self.pool2 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
41 |
-
|
42 |
-
self.rebnconv3 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
43 |
-
self.pool3 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
44 |
-
|
45 |
-
self.rebnconv4 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
46 |
-
self.pool4 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
47 |
-
|
48 |
-
self.rebnconv5 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
49 |
-
self.pool5 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
50 |
-
|
51 |
-
self.rebnconv6 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
52 |
-
|
53 |
-
self.rebnconv7 = REBNCONV(mid_ch,mid_ch,dirate=2)
|
54 |
-
|
55 |
-
self.rebnconv6d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
56 |
-
self.rebnconv5d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
57 |
-
self.rebnconv4d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
58 |
-
self.rebnconv3d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
59 |
-
self.rebnconv2d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
60 |
-
self.rebnconv1d = REBNCONV(mid_ch*2,out_ch,dirate=1)
|
61 |
-
|
62 |
-
def forward(self,x):
|
63 |
-
|
64 |
-
hx = x
|
65 |
-
hxin = self.rebnconvin(hx)
|
66 |
-
|
67 |
-
hx1 = self.rebnconv1(hxin)
|
68 |
-
hx = self.pool1(hx1)
|
69 |
-
|
70 |
-
hx2 = self.rebnconv2(hx)
|
71 |
-
hx = self.pool2(hx2)
|
72 |
-
|
73 |
-
hx3 = self.rebnconv3(hx)
|
74 |
-
hx = self.pool3(hx3)
|
75 |
-
|
76 |
-
hx4 = self.rebnconv4(hx)
|
77 |
-
hx = self.pool4(hx4)
|
78 |
-
|
79 |
-
hx5 = self.rebnconv5(hx)
|
80 |
-
hx = self.pool5(hx5)
|
81 |
-
|
82 |
-
hx6 = self.rebnconv6(hx)
|
83 |
-
|
84 |
-
hx7 = self.rebnconv7(hx6)
|
85 |
-
|
86 |
-
hx6d = self.rebnconv6d(torch.cat((hx7,hx6),1))
|
87 |
-
hx6dup = _upsample_like(hx6d,hx5)
|
88 |
-
|
89 |
-
hx5d = self.rebnconv5d(torch.cat((hx6dup,hx5),1))
|
90 |
-
hx5dup = _upsample_like(hx5d,hx4)
|
91 |
-
|
92 |
-
hx4d = self.rebnconv4d(torch.cat((hx5dup,hx4),1))
|
93 |
-
hx4dup = _upsample_like(hx4d,hx3)
|
94 |
-
|
95 |
-
hx3d = self.rebnconv3d(torch.cat((hx4dup,hx3),1))
|
96 |
-
hx3dup = _upsample_like(hx3d,hx2)
|
97 |
-
|
98 |
-
hx2d = self.rebnconv2d(torch.cat((hx3dup,hx2),1))
|
99 |
-
hx2dup = _upsample_like(hx2d,hx1)
|
100 |
-
|
101 |
-
hx1d = self.rebnconv1d(torch.cat((hx2dup,hx1),1))
|
102 |
-
|
103 |
-
return hx1d + hxin
|
104 |
-
|
105 |
-
### RSU-6 ###
|
106 |
-
class RSU6(nn.Module):#UNet06DRES(nn.Module):
|
107 |
-
|
108 |
-
def __init__(self, in_ch=3, mid_ch=12, out_ch=3):
|
109 |
-
super(RSU6,self).__init__()
|
110 |
-
|
111 |
-
self.rebnconvin = REBNCONV(in_ch,out_ch,dirate=1)
|
112 |
-
|
113 |
-
self.rebnconv1 = REBNCONV(out_ch,mid_ch,dirate=1)
|
114 |
-
self.pool1 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
115 |
-
|
116 |
-
self.rebnconv2 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
117 |
-
self.pool2 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
118 |
-
|
119 |
-
self.rebnconv3 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
120 |
-
self.pool3 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
121 |
-
|
122 |
-
self.rebnconv4 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
123 |
-
self.pool4 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
124 |
-
|
125 |
-
self.rebnconv5 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
126 |
-
|
127 |
-
self.rebnconv6 = REBNCONV(mid_ch,mid_ch,dirate=2)
|
128 |
-
|
129 |
-
self.rebnconv5d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
130 |
-
self.rebnconv4d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
131 |
-
self.rebnconv3d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
132 |
-
self.rebnconv2d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
133 |
-
self.rebnconv1d = REBNCONV(mid_ch*2,out_ch,dirate=1)
|
134 |
-
|
135 |
-
def forward(self,x):
|
136 |
-
|
137 |
-
hx = x
|
138 |
-
|
139 |
-
hxin = self.rebnconvin(hx)
|
140 |
-
|
141 |
-
hx1 = self.rebnconv1(hxin)
|
142 |
-
hx = self.pool1(hx1)
|
143 |
-
|
144 |
-
hx2 = self.rebnconv2(hx)
|
145 |
-
hx = self.pool2(hx2)
|
146 |
-
|
147 |
-
hx3 = self.rebnconv3(hx)
|
148 |
-
hx = self.pool3(hx3)
|
149 |
-
|
150 |
-
hx4 = self.rebnconv4(hx)
|
151 |
-
hx = self.pool4(hx4)
|
152 |
-
|
153 |
-
hx5 = self.rebnconv5(hx)
|
154 |
-
|
155 |
-
hx6 = self.rebnconv6(hx5)
|
156 |
-
|
157 |
-
|
158 |
-
hx5d = self.rebnconv5d(torch.cat((hx6,hx5),1))
|
159 |
-
hx5dup = _upsample_like(hx5d,hx4)
|
160 |
-
|
161 |
-
hx4d = self.rebnconv4d(torch.cat((hx5dup,hx4),1))
|
162 |
-
hx4dup = _upsample_like(hx4d,hx3)
|
163 |
-
|
164 |
-
hx3d = self.rebnconv3d(torch.cat((hx4dup,hx3),1))
|
165 |
-
hx3dup = _upsample_like(hx3d,hx2)
|
166 |
-
|
167 |
-
hx2d = self.rebnconv2d(torch.cat((hx3dup,hx2),1))
|
168 |
-
hx2dup = _upsample_like(hx2d,hx1)
|
169 |
-
|
170 |
-
hx1d = self.rebnconv1d(torch.cat((hx2dup,hx1),1))
|
171 |
-
|
172 |
-
return hx1d + hxin
|
173 |
-
|
174 |
-
### RSU-5 ###
|
175 |
-
class RSU5(nn.Module):#UNet05DRES(nn.Module):
|
176 |
-
|
177 |
-
def __init__(self, in_ch=3, mid_ch=12, out_ch=3):
|
178 |
-
super(RSU5,self).__init__()
|
179 |
-
|
180 |
-
self.rebnconvin = REBNCONV(in_ch,out_ch,dirate=1)
|
181 |
-
|
182 |
-
self.rebnconv1 = REBNCONV(out_ch,mid_ch,dirate=1)
|
183 |
-
self.pool1 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
184 |
-
|
185 |
-
self.rebnconv2 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
186 |
-
self.pool2 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
187 |
-
|
188 |
-
self.rebnconv3 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
189 |
-
self.pool3 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
190 |
-
|
191 |
-
self.rebnconv4 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
192 |
-
|
193 |
-
self.rebnconv5 = REBNCONV(mid_ch,mid_ch,dirate=2)
|
194 |
-
|
195 |
-
self.rebnconv4d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
196 |
-
self.rebnconv3d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
197 |
-
self.rebnconv2d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
198 |
-
self.rebnconv1d = REBNCONV(mid_ch*2,out_ch,dirate=1)
|
199 |
-
|
200 |
-
def forward(self,x):
|
201 |
-
|
202 |
-
hx = x
|
203 |
-
|
204 |
-
hxin = self.rebnconvin(hx)
|
205 |
-
|
206 |
-
hx1 = self.rebnconv1(hxin)
|
207 |
-
hx = self.pool1(hx1)
|
208 |
-
|
209 |
-
hx2 = self.rebnconv2(hx)
|
210 |
-
hx = self.pool2(hx2)
|
211 |
-
|
212 |
-
hx3 = self.rebnconv3(hx)
|
213 |
-
hx = self.pool3(hx3)
|
214 |
-
|
215 |
-
hx4 = self.rebnconv4(hx)
|
216 |
-
|
217 |
-
hx5 = self.rebnconv5(hx4)
|
218 |
-
|
219 |
-
hx4d = self.rebnconv4d(torch.cat((hx5,hx4),1))
|
220 |
-
hx4dup = _upsample_like(hx4d,hx3)
|
221 |
-
|
222 |
-
hx3d = self.rebnconv3d(torch.cat((hx4dup,hx3),1))
|
223 |
-
hx3dup = _upsample_like(hx3d,hx2)
|
224 |
-
|
225 |
-
hx2d = self.rebnconv2d(torch.cat((hx3dup,hx2),1))
|
226 |
-
hx2dup = _upsample_like(hx2d,hx1)
|
227 |
-
|
228 |
-
hx1d = self.rebnconv1d(torch.cat((hx2dup,hx1),1))
|
229 |
-
|
230 |
-
return hx1d + hxin
|
231 |
-
|
232 |
-
### RSU-4 ###
|
233 |
-
class RSU4(nn.Module):#UNet04DRES(nn.Module):
|
234 |
-
|
235 |
-
def __init__(self, in_ch=3, mid_ch=12, out_ch=3):
|
236 |
-
super(RSU4,self).__init__()
|
237 |
-
|
238 |
-
self.rebnconvin = REBNCONV(in_ch,out_ch,dirate=1)
|
239 |
-
|
240 |
-
self.rebnconv1 = REBNCONV(out_ch,mid_ch,dirate=1)
|
241 |
-
self.pool1 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
242 |
-
|
243 |
-
self.rebnconv2 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
244 |
-
self.pool2 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
245 |
-
|
246 |
-
self.rebnconv3 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
247 |
-
|
248 |
-
self.rebnconv4 = REBNCONV(mid_ch,mid_ch,dirate=2)
|
249 |
-
|
250 |
-
self.rebnconv3d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
251 |
-
self.rebnconv2d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
252 |
-
self.rebnconv1d = REBNCONV(mid_ch*2,out_ch,dirate=1)
|
253 |
-
|
254 |
-
def forward(self,x):
|
255 |
-
|
256 |
-
hx = x
|
257 |
-
|
258 |
-
hxin = self.rebnconvin(hx)
|
259 |
-
|
260 |
-
hx1 = self.rebnconv1(hxin)
|
261 |
-
hx = self.pool1(hx1)
|
262 |
-
|
263 |
-
hx2 = self.rebnconv2(hx)
|
264 |
-
hx = self.pool2(hx2)
|
265 |
-
|
266 |
-
hx3 = self.rebnconv3(hx)
|
267 |
-
|
268 |
-
hx4 = self.rebnconv4(hx3)
|
269 |
-
|
270 |
-
hx3d = self.rebnconv3d(torch.cat((hx4,hx3),1))
|
271 |
-
hx3dup = _upsample_like(hx3d,hx2)
|
272 |
-
|
273 |
-
hx2d = self.rebnconv2d(torch.cat((hx3dup,hx2),1))
|
274 |
-
hx2dup = _upsample_like(hx2d,hx1)
|
275 |
-
|
276 |
-
hx1d = self.rebnconv1d(torch.cat((hx2dup,hx1),1))
|
277 |
-
|
278 |
-
return hx1d + hxin
|
279 |
-
|
280 |
-
### RSU-4F ###
|
281 |
-
class RSU4F(nn.Module):#UNet04FRES(nn.Module):
|
282 |
-
|
283 |
-
def __init__(self, in_ch=3, mid_ch=12, out_ch=3):
|
284 |
-
super(RSU4F,self).__init__()
|
285 |
-
|
286 |
-
self.rebnconvin = REBNCONV(in_ch,out_ch,dirate=1)
|
287 |
-
|
288 |
-
self.rebnconv1 = REBNCONV(out_ch,mid_ch,dirate=1)
|
289 |
-
self.rebnconv2 = REBNCONV(mid_ch,mid_ch,dirate=2)
|
290 |
-
self.rebnconv3 = REBNCONV(mid_ch,mid_ch,dirate=4)
|
291 |
-
|
292 |
-
self.rebnconv4 = REBNCONV(mid_ch,mid_ch,dirate=8)
|
293 |
-
|
294 |
-
self.rebnconv3d = REBNCONV(mid_ch*2,mid_ch,dirate=4)
|
295 |
-
self.rebnconv2d = REBNCONV(mid_ch*2,mid_ch,dirate=2)
|
296 |
-
self.rebnconv1d = REBNCONV(mid_ch*2,out_ch,dirate=1)
|
297 |
-
|
298 |
-
def forward(self,x):
|
299 |
-
|
300 |
-
hx = x
|
301 |
-
|
302 |
-
hxin = self.rebnconvin(hx)
|
303 |
-
|
304 |
-
hx1 = self.rebnconv1(hxin)
|
305 |
-
hx2 = self.rebnconv2(hx1)
|
306 |
-
hx3 = self.rebnconv3(hx2)
|
307 |
-
|
308 |
-
hx4 = self.rebnconv4(hx3)
|
309 |
-
|
310 |
-
hx3d = self.rebnconv3d(torch.cat((hx4,hx3),1))
|
311 |
-
hx2d = self.rebnconv2d(torch.cat((hx3d,hx2),1))
|
312 |
-
hx1d = self.rebnconv1d(torch.cat((hx2d,hx1),1))
|
313 |
-
|
314 |
-
return hx1d + hxin
|
315 |
-
|
316 |
-
|
317 |
-
##### U^2-Net ####
|
318 |
-
class U2NET(nn.Module):
|
319 |
-
|
320 |
-
def __init__(self,in_ch=3,out_ch=1):
|
321 |
-
super(U2NET,self).__init__()
|
322 |
-
|
323 |
-
self.stage1 = RSU7(in_ch,32,64)
|
324 |
-
self.pool12 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
325 |
-
|
326 |
-
self.stage2 = RSU6(64,32,128)
|
327 |
-
self.pool23 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
328 |
-
|
329 |
-
self.stage3 = RSU5(128,64,256)
|
330 |
-
self.pool34 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
331 |
-
|
332 |
-
self.stage4 = RSU4(256,128,512)
|
333 |
-
self.pool45 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
334 |
-
|
335 |
-
self.stage5 = RSU4F(512,256,512)
|
336 |
-
self.pool56 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
337 |
-
|
338 |
-
self.stage6 = RSU4F(512,256,512)
|
339 |
-
|
340 |
-
# decoder
|
341 |
-
self.stage5d = RSU4F(1024,256,512)
|
342 |
-
self.stage4d = RSU4(1024,128,256)
|
343 |
-
self.stage3d = RSU5(512,64,128)
|
344 |
-
self.stage2d = RSU6(256,32,64)
|
345 |
-
self.stage1d = RSU7(128,16,64)
|
346 |
-
|
347 |
-
self.side1 = nn.Conv2d(64,out_ch,3,padding=1)
|
348 |
-
self.side2 = nn.Conv2d(64,out_ch,3,padding=1)
|
349 |
-
self.side3 = nn.Conv2d(128,out_ch,3,padding=1)
|
350 |
-
self.side4 = nn.Conv2d(256,out_ch,3,padding=1)
|
351 |
-
self.side5 = nn.Conv2d(512,out_ch,3,padding=1)
|
352 |
-
self.side6 = nn.Conv2d(512,out_ch,3,padding=1)
|
353 |
-
|
354 |
-
self.outconv = nn.Conv2d(6*out_ch,out_ch,1)
|
355 |
-
|
356 |
-
def forward(self,x):
|
357 |
-
|
358 |
-
hx = x
|
359 |
-
|
360 |
-
#stage 1
|
361 |
-
hx1 = self.stage1(hx)
|
362 |
-
hx = self.pool12(hx1)
|
363 |
-
|
364 |
-
#stage 2
|
365 |
-
hx2 = self.stage2(hx)
|
366 |
-
hx = self.pool23(hx2)
|
367 |
-
|
368 |
-
#stage 3
|
369 |
-
hx3 = self.stage3(hx)
|
370 |
-
hx = self.pool34(hx3)
|
371 |
-
|
372 |
-
#stage 4
|
373 |
-
hx4 = self.stage4(hx)
|
374 |
-
hx = self.pool45(hx4)
|
375 |
-
|
376 |
-
#stage 5
|
377 |
-
hx5 = self.stage5(hx)
|
378 |
-
hx = self.pool56(hx5)
|
379 |
-
|
380 |
-
#stage 6
|
381 |
-
hx6 = self.stage6(hx)
|
382 |
-
hx6up = _upsample_like(hx6,hx5)
|
383 |
-
|
384 |
-
#-------------------- decoder --------------------
|
385 |
-
hx5d = self.stage5d(torch.cat((hx6up,hx5),1))
|
386 |
-
hx5dup = _upsample_like(hx5d,hx4)
|
387 |
-
|
388 |
-
hx4d = self.stage4d(torch.cat((hx5dup,hx4),1))
|
389 |
-
hx4dup = _upsample_like(hx4d,hx3)
|
390 |
-
|
391 |
-
hx3d = self.stage3d(torch.cat((hx4dup,hx3),1))
|
392 |
-
hx3dup = _upsample_like(hx3d,hx2)
|
393 |
-
|
394 |
-
hx2d = self.stage2d(torch.cat((hx3dup,hx2),1))
|
395 |
-
hx2dup = _upsample_like(hx2d,hx1)
|
396 |
-
|
397 |
-
hx1d = self.stage1d(torch.cat((hx2dup,hx1),1))
|
398 |
-
|
399 |
-
|
400 |
-
#side output
|
401 |
-
d1 = self.side1(hx1d)
|
402 |
-
|
403 |
-
d2 = self.side2(hx2d)
|
404 |
-
d2 = _upsample_like(d2,d1)
|
405 |
-
|
406 |
-
d3 = self.side3(hx3d)
|
407 |
-
d3 = _upsample_like(d3,d1)
|
408 |
-
|
409 |
-
d4 = self.side4(hx4d)
|
410 |
-
d4 = _upsample_like(d4,d1)
|
411 |
-
|
412 |
-
d5 = self.side5(hx5d)
|
413 |
-
d5 = _upsample_like(d5,d1)
|
414 |
-
|
415 |
-
d6 = self.side6(hx6)
|
416 |
-
d6 = _upsample_like(d6,d1)
|
417 |
-
|
418 |
-
d0 = self.outconv(torch.cat((d1,d2,d3,d4,d5,d6),1))
|
419 |
-
|
420 |
-
return torch.sigmoid(d0), torch.sigmoid(d1), torch.sigmoid(d2), torch.sigmoid(d3), torch.sigmoid(d4), torch.sigmoid(d5), torch.sigmoid(d6)
|
421 |
-
|
422 |
-
### U^2-Net small ###
|
423 |
-
class U2NETP(nn.Module):
|
424 |
-
|
425 |
-
def __init__(self,in_ch=3,out_ch=1):
|
426 |
-
super(U2NETP,self).__init__()
|
427 |
-
|
428 |
-
self.stage1 = RSU7(in_ch,16,64)
|
429 |
-
self.pool12 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
430 |
-
|
431 |
-
self.stage2 = RSU6(64,16,64)
|
432 |
-
self.pool23 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
433 |
-
|
434 |
-
self.stage3 = RSU5(64,16,64)
|
435 |
-
self.pool34 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
436 |
-
|
437 |
-
self.stage4 = RSU4(64,16,64)
|
438 |
-
self.pool45 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
439 |
-
|
440 |
-
self.stage5 = RSU4F(64,16,64)
|
441 |
-
self.pool56 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
442 |
-
|
443 |
-
self.stage6 = RSU4F(64,16,64)
|
444 |
-
|
445 |
-
# decoder
|
446 |
-
self.stage5d = RSU4F(128,16,64)
|
447 |
-
self.stage4d = RSU4(128,16,64)
|
448 |
-
self.stage3d = RSU5(128,16,64)
|
449 |
-
self.stage2d = RSU6(128,16,64)
|
450 |
-
self.stage1d = RSU7(128,16,64)
|
451 |
-
|
452 |
-
self.side1 = nn.Conv2d(64,out_ch,3,padding=1)
|
453 |
-
self.side2 = nn.Conv2d(64,out_ch,3,padding=1)
|
454 |
-
self.side3 = nn.Conv2d(64,out_ch,3,padding=1)
|
455 |
-
self.side4 = nn.Conv2d(64,out_ch,3,padding=1)
|
456 |
-
self.side5 = nn.Conv2d(64,out_ch,3,padding=1)
|
457 |
-
self.side6 = nn.Conv2d(64,out_ch,3,padding=1)
|
458 |
-
|
459 |
-
self.outconv = nn.Conv2d(6*out_ch,out_ch,1)
|
460 |
-
|
461 |
-
def forward(self,x):
|
462 |
-
|
463 |
-
hx = x
|
464 |
-
|
465 |
-
#stage 1
|
466 |
-
hx1 = self.stage1(hx)
|
467 |
-
hx = self.pool12(hx1)
|
468 |
-
|
469 |
-
#stage 2
|
470 |
-
hx2 = self.stage2(hx)
|
471 |
-
hx = self.pool23(hx2)
|
472 |
-
|
473 |
-
#stage 3
|
474 |
-
hx3 = self.stage3(hx)
|
475 |
-
hx = self.pool34(hx3)
|
476 |
-
|
477 |
-
#stage 4
|
478 |
-
hx4 = self.stage4(hx)
|
479 |
-
hx = self.pool45(hx4)
|
480 |
-
|
481 |
-
#stage 5
|
482 |
-
hx5 = self.stage5(hx)
|
483 |
-
hx = self.pool56(hx5)
|
484 |
-
|
485 |
-
#stage 6
|
486 |
-
hx6 = self.stage6(hx)
|
487 |
-
hx6up = _upsample_like(hx6,hx5)
|
488 |
-
|
489 |
-
#decoder
|
490 |
-
hx5d = self.stage5d(torch.cat((hx6up,hx5),1))
|
491 |
-
hx5dup = _upsample_like(hx5d,hx4)
|
492 |
-
|
493 |
-
hx4d = self.stage4d(torch.cat((hx5dup,hx4),1))
|
494 |
-
hx4dup = _upsample_like(hx4d,hx3)
|
495 |
-
|
496 |
-
hx3d = self.stage3d(torch.cat((hx4dup,hx3),1))
|
497 |
-
hx3dup = _upsample_like(hx3d,hx2)
|
498 |
-
|
499 |
-
hx2d = self.stage2d(torch.cat((hx3dup,hx2),1))
|
500 |
-
hx2dup = _upsample_like(hx2d,hx1)
|
501 |
-
|
502 |
-
hx1d = self.stage1d(torch.cat((hx2dup,hx1),1))
|
503 |
-
|
504 |
-
|
505 |
-
#side output
|
506 |
-
d1 = self.side1(hx1d)
|
507 |
-
|
508 |
-
d2 = self.side2(hx2d)
|
509 |
-
d2 = _upsample_like(d2,d1)
|
510 |
-
|
511 |
-
d3 = self.side3(hx3d)
|
512 |
-
d3 = _upsample_like(d3,d1)
|
513 |
-
|
514 |
-
d4 = self.side4(hx4d)
|
515 |
-
d4 = _upsample_like(d4,d1)
|
516 |
-
|
517 |
-
d5 = self.side5(hx5d)
|
518 |
-
d5 = _upsample_like(d5,d1)
|
519 |
-
|
520 |
-
d6 = self.side6(hx6)
|
521 |
-
d6 = _upsample_like(d6,d1)
|
522 |
-
|
523 |
-
d0 = self.outconv(torch.cat((d1,d2,d3,d4,d5,d6),1))
|
524 |
-
|
525 |
-
return torch.sigmoid(d0), torch.sigmoid(d1), torch.sigmoid(d2), torch.sigmoid(d3), torch.sigmoid(d4), torch.sigmoid(d5), torch.sigmoid(d6)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
u2net/u2net_inference.py
DELETED
@@ -1,100 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
from typing import Union
|
3 |
-
from skimage import io, transform
|
4 |
-
import torch
|
5 |
-
import torchvision
|
6 |
-
from torch.autograd import Variable
|
7 |
-
import torch.nn as nn
|
8 |
-
import torch.nn.functional as F
|
9 |
-
from torch.utils.data import Dataset, DataLoader
|
10 |
-
from torchvision import transforms#, utils
|
11 |
-
# import torch.optim as optim
|
12 |
-
|
13 |
-
import numpy as np
|
14 |
-
from PIL import Image
|
15 |
-
import glob
|
16 |
-
|
17 |
-
from .data_loader import RescaleT
|
18 |
-
from .data_loader import ToTensor
|
19 |
-
from .data_loader import ToTensorLab
|
20 |
-
from .data_loader import SalObjDataset
|
21 |
-
|
22 |
-
from .u2net import U2NET # full size version 173.6 MB
|
23 |
-
from .u2net import U2NETP # small version u2net 4.7 MB
|
24 |
-
|
25 |
-
|
26 |
-
# normalize the predicted SOD probability map
|
27 |
-
def normPRED(d):
|
28 |
-
ma = torch.max(d)
|
29 |
-
mi = torch.min(d)
|
30 |
-
|
31 |
-
dn = (d-mi)/(ma-mi)
|
32 |
-
|
33 |
-
return dn
|
34 |
-
|
35 |
-
def save_output(image_name,pred,d_dir):
|
36 |
-
|
37 |
-
predict = pred
|
38 |
-
predict = predict.squeeze()
|
39 |
-
predict_np = predict.cpu().data.numpy()
|
40 |
-
|
41 |
-
im = Image.fromarray(predict_np*255).convert('RGB')
|
42 |
-
img_name = image_name.split(os.sep)[-1]
|
43 |
-
image = io.imread(image_name)
|
44 |
-
imo = im.resize((image.shape[1],image.shape[0]),resample=Image.BILINEAR)
|
45 |
-
|
46 |
-
pb_np = np.array(imo)
|
47 |
-
|
48 |
-
aaa = img_name.split(".")
|
49 |
-
bbb = aaa[0:-1]
|
50 |
-
imidx = bbb[0]
|
51 |
-
for i in range(1,len(bbb)):
|
52 |
-
imidx = imidx + "." + bbb[i]
|
53 |
-
|
54 |
-
imo.save(d_dir+imidx+'.png')
|
55 |
-
|
56 |
-
|
57 |
-
def get_u2net_model():
|
58 |
-
model_pth = "models/u2net.pth"
|
59 |
-
net = U2NET(3,1)
|
60 |
-
|
61 |
-
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
62 |
-
net.load_state_dict(torch.load(model_pth, map_location=device))
|
63 |
-
net.eval()
|
64 |
-
|
65 |
-
return net
|
66 |
-
|
67 |
-
|
68 |
-
def get_saliency_mask(model, image_or_image_path : Union[str, np.array]):
|
69 |
-
|
70 |
-
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
71 |
-
|
72 |
-
if isinstance(image_or_image_path, str):
|
73 |
-
image = io.imread(image_or_image_path)
|
74 |
-
else:
|
75 |
-
image = image_or_image_path
|
76 |
-
|
77 |
-
transform = transforms.Compose([RescaleT(320), ToTensorLab(flag=0)])
|
78 |
-
sample = transform({
|
79 |
-
'imidx' : np.array([0]),
|
80 |
-
'image' : image,
|
81 |
-
'label' : np.expand_dims(np.zeros(image.shape[:-1]), -1)
|
82 |
-
})
|
83 |
-
|
84 |
-
input_test = sample["image"].unsqueeze(0).type(torch.FloatTensor).to(device)
|
85 |
-
|
86 |
-
d1,d2,d3,d4,d5,d6,d7= model(input_test)
|
87 |
-
|
88 |
-
pred = d1[:,0,:,:]
|
89 |
-
pred = normPRED(pred)
|
90 |
-
|
91 |
-
pred = pred.squeeze()
|
92 |
-
predict_np = pred.cpu().data.numpy()
|
93 |
-
|
94 |
-
rescaled = predict_np
|
95 |
-
rescaled = rescaled - np.min(rescaled)
|
96 |
-
rescaled = rescaled / np.max(rescaled)
|
97 |
-
|
98 |
-
im = Image.fromarray(rescaled * 255).convert("RGB")
|
99 |
-
|
100 |
-
return im
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|