from u2net.u2net_inference import get_u2net_model, get_saliency_mask import numpy as np from PIL import Image import matplotlib.pyplot as plt from pathlib import Path import matplotlib.pyplot as plt import numpy as np import gradio as gr print('Loading model...') model = get_u2net_model() print('Successfully loaded model...') examples = ['examples/1.jpg', 'examples/6.jpg'] def infer(image): image_out = get_saliency_mask(model, image) return image_out iface = gr.Interface( fn=infer, title="U^2Net Based Saliency Estimatiion", description = "U^2Net Saliency Estimation", inputs=[gr.Image(label="image", type="numpy", shape=(640, 480))], outputs="image", cache_examples=True, examples=examples).launch(debug=True)