Lin-K76 commited on
Commit
c7fb3ef
1 Parent(s): 3aab158

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +189 -0
README.md ADDED
@@ -0,0 +1,189 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - fp8
4
+ - vllm
5
+ license: other
6
+ license_name: deepseek-license
7
+ license_link: https://github.com/deepseek-ai/DeepSeek-Coder-V2/blob/main/LICENSE-MODEL
8
+ ---
9
+
10
+ # DeepSeek-Coder-V2-Instruct-FP8
11
+
12
+ ## Model Overview
13
+ - **Model Architecture:** DeepSeek-Coder-V2-Instruct
14
+ - **Input:** Text
15
+ - **Output:** Text
16
+ - **Model Optimizations:**
17
+ - **Weight quantization:** FP8
18
+ - **Activation quantization:** FP8
19
+ - **Intended Use Cases:** Intended for commercial and research use in English. Similarly to [Meta-Llama-3-7B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-7B-Instruct), this models is intended for assistant-like chat.
20
+ - **Out-of-scope:** Use in any manner that violates applicable laws or regulations (including trade compliance laws). Use in languages other than English.
21
+ - **Release Date:** 7/22/2024
22
+ - **Version:** 1.0
23
+ - **License(s):** [deepseek-license](https://github.com/deepseek-ai/DeepSeek-Coder-V2/blob/main/LICENSE-MODEL)
24
+ - **Model Developers:** Neural Magic
25
+
26
+ Quantized version of [DeepSeek-Coder-V2-Instruct](https://huggingface.co/deepseek-ai/DeepSeek-Coder-V2-Instruct).
27
+ <!-- It achieves an average score of 73.19 on the [OpenLLM](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) benchmark (version 1), whereas the unquantized model achieves 73.48. -->
28
+ It achieves an average score of 88.98 on the [HumanEval+](https://github.com/openai/human-eval?tab=readme-ov-file) benchmark, whereas the unquantized model achieves 87.63.
29
+
30
+ ### Model Optimizations
31
+
32
+ This model was obtained by quantizing the weights and activations of [DeepSeek-Coder-V2-Instruct](https://huggingface.co/deepseek-ai/DeepSeek-Coder-V2-Instruct) to FP8 data type, ready for inference with vLLM >= 0.5.2.
33
+ This optimization reduces the number of bits per parameter from 16 to 8, reducing the disk size and GPU memory requirements by approximately 50%. In particular, this model can now be loaded and evaluated with only 4xH100 GPUs, as opposed to 8.
34
+
35
+ Only the weights and activations of the linear operators within transformers blocks are quantized. Symmetric per-tensor quantization is applied, in which a single linear scaling maps the FP8 representations of the quantized weights and activations.
36
+ [AutoFP8](https://github.com/neuralmagic/AutoFP8) is used for quantization with 512 sequences of UltraChat.
37
+
38
+ ## Deployment
39
+
40
+ ### Use with vLLM
41
+
42
+ This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below.
43
+
44
+ ```python
45
+ from vllm import LLM, SamplingParams
46
+ from transformers import AutoTokenizer
47
+
48
+ model_id = "neuralmagic/DeepSeek-Coder-V2-Instruct-FP8"
49
+
50
+ sampling_params = SamplingParams(temperature=0.6, top_p=0.9, max_tokens=256)
51
+
52
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
53
+
54
+ messages = [
55
+ {"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
56
+ {"role": "user", "content": "Who are you?"},
57
+ ]
58
+
59
+ prompts = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
60
+
61
+ llm = LLM(model=model_id, trust_remote_code=True, max_model_len=4096)
62
+
63
+ outputs = llm.generate(prompts, sampling_params)
64
+
65
+ generated_text = outputs[0].outputs[0].text
66
+ print(generated_text)
67
+ ```
68
+
69
+ vLLM aslo supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details.
70
+
71
+ ## Creation
72
+
73
+ This model was created by applying [AutoFP8 with calibration samples from ultrachat](https://github.com/neuralmagic/AutoFP8/blob/147fa4d9e1a90ef8a93f96fc7d9c33056ddc017a/example_dataset.py) with expert gates kept at original precision, as presented in the code snipet below.
74
+ Notably, a custom device map had to be used, as the model was being incorrectly loaded otherwise.
75
+ Although AutoFP8 was used for this particular model, Neural Magic is transitioning to using [llm-compressor](https://github.com/vllm-project/llm-compressor) which supports several quantization schemes and models not supported by AutoFP8.
76
+
77
+ ```python
78
+ from datasets import load_dataset
79
+ from transformers import AutoTokenizer
80
+
81
+ from auto_fp8 import AutoFP8ForCausalLM, BaseQuantizeConfig
82
+
83
+ pretrained_model_dir = "deepseek-ai/DeepSeek-Coder-V2-Instruct"
84
+ quantized_model_dir = "DeepSeek-Coder-V2-Instruct-FP8"
85
+
86
+ tokenizer = AutoTokenizer.from_pretrained(pretrained_model_dir, use_fast=True, model_max_length=4096)
87
+ tokenizer.pad_token = tokenizer.eos_token
88
+
89
+ ds = load_dataset("mgoin/ultrachat_2k", split="train_sft").select(range(512))
90
+ examples = [tokenizer.apply_chat_template(batch["messages"], tokenize=False) for batch in ds]
91
+ examples = tokenizer(examples, padding=True, truncation=True, return_tensors="pt").to("cuda")
92
+
93
+ quantize_config = BaseQuantizeConfig(
94
+ quant_method="fp8",
95
+ activation_scheme="static"
96
+ ignore_patterns=["re:.*lm_head"],
97
+ )
98
+
99
+ device_map = {
100
+ "model.embed_tokens": 0,
101
+ "model.layers.0": 0,
102
+ }
103
+ for i in range(1, 60):
104
+ device_map[f"model.layers.{i}"] = i//8
105
+
106
+ device_map["model.norm"] = 7
107
+ device_map["lm_head"] = 7
108
+
109
+ model = AutoFP8ForCausalLM.from_pretrained(
110
+ pretrained_model_dir, quantize_config=quantize_config, device_map = device_map
111
+ )
112
+ model.quantize(examples)
113
+ model.save_quantized(quantized_model_dir)
114
+ ```
115
+
116
+ ## Evaluation
117
+
118
+ The model was evaluated on the [HumanEval+](https://github.com/openai/human-eval?tab=readme-ov-file) benchmark with the [Neural Magic fork](https://github.com/neuralmagic/evalplus) of the [EvalPlus implementation of HumanEval+](https://github.com/evalplus/evalplus) and the [vLLM](https://docs.vllm.ai/en/stable/) engine, using the following command:
119
+ ```
120
+ python codegen/generate.py --model neuralmagic/DeepSeek-Coder-V2-Instruct-FP8 --temperature 0.2 --n_samples 50 --resume --root ~ --dataset humaneval
121
+ python evalplus/sanitize.py ~/humaneval/neuralmagic--DeepSeek-Coder-V2-Instruct-FP8_vllm_temp_0.2
122
+ evalplus.evaluate --dataset humaneval --samples ~/humaneval/neuralmagic--DeepSeek-Coder-V2-Instruct-FP8_vllm_temp_0.2-sanitized
123
+ ```
124
+
125
+ ### Accuracy
126
+
127
+ #### HumanEval+ evaluation scores
128
+ <table>
129
+ <tr>
130
+ <td><strong>Benchmark</strong>
131
+ </td>
132
+ <td><strong>DeepSeek-Coder-V2-Instruct</strong>
133
+ </td>
134
+ <td><strong>DeepSeek-Coder-V2-Instruct-FP8(this model)</strong>
135
+ </td>
136
+ <td><strong>Recovery</strong>
137
+ </td>
138
+ </tr>
139
+ <tr>
140
+ <td>base pass@1
141
+ </td>
142
+ <td>88.2
143
+ </td>
144
+ <td>87.6
145
+ </td>
146
+ <td>99.32%
147
+ </td>
148
+ </tr>
149
+ <tr>
150
+ <td>base pass@10
151
+ </td>
152
+ <td>92.3
153
+ </td>
154
+ <td>94.7
155
+ </td>
156
+ <td>102.60%
157
+ </td>
158
+ </tr>
159
+ <tr>
160
+ <td>base+extra pass@1
161
+ </td>
162
+ <td>83.3
163
+ </td>
164
+ <td>83.2
165
+ </td>
166
+ <td>99.88%
167
+ </td>
168
+ </tr>
169
+ <tr>
170
+ <td>base+extra pass@10
171
+ </td>
172
+ <td>86.7
173
+ </td>
174
+ <td>90.4
175
+ </td>
176
+ <td>104.27%
177
+ </td>
178
+ </tr>
179
+ <tr>
180
+ <td><strong>Average</strong>
181
+ </td>
182
+ <td><strong>87.63</strong>
183
+ </td>
184
+ <td><strong>88.98</strong>
185
+ </td>
186
+ <td><strong>101.5%</strong>
187
+ </td>
188
+ </tr>
189
+ </table>