Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: neuralmagic/Llama-2-7b-pruned50-retrained
|
3 |
+
inference: true
|
4 |
+
model_type: llama
|
5 |
+
pipeline_tag: text-generation
|
6 |
+
datasets:
|
7 |
+
- garage-bAInd/Open-Platypus
|
8 |
+
- Open-Orca/OpenOrca
|
9 |
+
- cognitivecomputations/dolphin
|
10 |
+
tags:
|
11 |
+
- sparse
|
12 |
+
- instruct
|
13 |
+
---
|
14 |
+
|
15 |
+
# Llama-2-7b-pruned50-retrained-instruct
|
16 |
+
|
17 |
+
This repo contains a [50% sparse Llama 2 7B](https://huggingface.co/neuralmagic/Llama-2-7b-pruned50-retrained) finetuned for instruction-following tasks using a blend of the Platypus + Open Orca + Dolphin datasets.
|
18 |
+
|
19 |
+
**Authors**: Neural Magic, Cerebras
|
20 |
+
|
21 |
+
## Usage
|
22 |
+
|
23 |
+
Below we share some code snippets on how to get quickly started with running the model.
|
24 |
+
|
25 |
+
### Sparse Transfer
|
26 |
+
|
27 |
+
By leveraging a pre-sparsified model's structure, you can efficiently fine-tune on new data, leading to reduced hyperparameter tuning, training times, and computational costs. Learn about this process [here](https://neuralmagic.github.io/docs-v2/get-started/transfer).
|
28 |
+
|
29 |
+
### Running the model
|
30 |
+
|
31 |
+
This model may be run with the transformers library. For accelerated inference with sparsity, deploy with [nm-vllm](https://github.com/neuralmagic/nm-vllm) or [deepsparse](https://github.com/neuralmagic/deepsparse).
|
32 |
+
|
33 |
+
```python
|
34 |
+
# pip install transformers accelerate
|
35 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
36 |
+
|
37 |
+
tokenizer = AutoTokenizer.from_pretrained("Llama-2-7b-pruned50-retrained-instruct")
|
38 |
+
model = AutoModelForCausalLM.from_pretrained("Llama-2-7b-pruned50-retrained-instruct", device_map="auto")
|
39 |
+
|
40 |
+
input_text = "Write a recipe for banana bread:\n"
|
41 |
+
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
|
42 |
+
|
43 |
+
outputs = model.generate(**input_ids)
|
44 |
+
print(tokenizer.decode(outputs[0]))
|
45 |
+
```
|
46 |
+
|
47 |
+
## Evaluation Benchmark Results
|
48 |
+
|
49 |
+
Model evaluation metrics and results.
|
50 |
+
|
51 |
+
| Benchmark | Metric | Llama-2-7b-instruct | Llama-2-7b-pruned70-retrained-instruct |
|
52 |
+
|------------------------------------------------|---------------|-------------|-------------------------------|
|
53 |
+
| [MMLU](https://arxiv.org/abs/2009.03300) | 5-shot, top-1 | xxxx | xxxx |
|
54 |
+
| [HellaSwag](https://arxiv.org/abs/1905.07830) | 0-shot | xxxx | xxxx |
|
55 |
+
| [WinoGrande](https://arxiv.org/abs/1907.10641) | partial score | xxxx | xxxx |
|
56 |
+
| [ARC-c](https://arxiv.org/abs/1911.01547) | | xxxx | xxxx |
|
57 |
+
| [TruthfulQA](https://arxiv.org/abs/2109.07958) | 5-shot | xxxx | xxxx |
|
58 |
+
| [HumanEval](https://arxiv.org/abs/2107.03374) | pass@1 | xxxx | xxxx |
|
59 |
+
| [GSM8K](https://arxiv.org/abs/2110.14168) | maj@1 | xxxx | xxxx |
|
60 |
+
|
61 |
+
## Model Training Details
|
62 |
+
|
63 |
+
Coming soon.
|
64 |
+
|
65 |
+
## Help
|
66 |
+
|
67 |
+
For further support, and discussions on these models and AI in general, join [Neural Magic's Slack Community](https://join.slack.com/t/discuss-neuralmagic/shared_invite/zt-q1a1cnvo-YBoICSIw3L1dmQpjBeDurQ)
|