--- base_model: neuralmagic/Llama-2-7b-pruned70-retrained inference: true model_type: llama pipeline_tag: text-generation datasets: - garage-bAInd/Open-Platypus - Open-Orca/OpenOrca - cognitivecomputations/dolphin tags: - sparse - instruct --- # Llama-2-7b-pruned70-retrained-instruct This repo contains a [70% sparse Llama 2 7B](https://huggingface.co/neuralmagic/Llama-2-7b-pruned70-retrained) finetuned for instruction-following tasks using a blend of the Platypus + Open Orca + Dolphin datasets. **Authors**: Neural Magic, Cerebras ## Usage Below we share some code snippets on how to get quickly started with running the model. ### Sparse Transfer By leveraging a pre-sparsified model's structure, you can efficiently fine-tune on new data, leading to reduced hyperparameter tuning, training times, and computational costs. Learn about this process [here](https://neuralmagic.github.io/docs-v2/get-started/transfer). ### Running the model This model may be run with the transformers library. For accelerated inference with sparsity, deploy with [nm-vllm](https://github.com/neuralmagic/nm-vllm) or [deepsparse](https://github.com/neuralmagic/deepsparse). ```python # pip install transformers accelerate from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("Llama-2-7b-pruned70-retrained-instruct") model = AutoModelForCausalLM.from_pretrained("Llama-2-7b-pruned70-retrained-instruct", device_map="auto") input_text = "Write a recipe for banana bread:\n" input_ids = tokenizer(input_text, return_tensors="pt").to("cuda") outputs = model.generate(**input_ids) print(tokenizer.decode(outputs[0])) ``` ## Evaluation Benchmark Results Model evaluation metrics and results. | Benchmark | Metric | Llama-2-7b-instruct | Llama-2-7b-pruned70-retrained-instruct | |------------------------------------------------|---------------|-------------|-------------------------------| | [MMLU](https://arxiv.org/abs/2009.03300) | 5-shot | 48.60% | 42.33% | | [HellaSwag](https://arxiv.org/abs/1905.07830) | 10-shot | 79.45% | 77.21% | | [WinoGrande](https://arxiv.org/abs/1907.10641) | 5-shot | 75.69% | 71.90% | | [ARC-c](https://arxiv.org/abs/1911.01547) | 25-shot | 53.92% | 47.35% | | [TruthfulQA](https://arxiv.org/abs/2109.07958) | 0-shot | 43.63% | 42.25% | | [GSM8K](https://arxiv.org/abs/2110.14168) | 5-shot | 15.92% | 14.25% | ## Model Training Details This model was obtained by sparse-tranfer of the sparse foundational model [Llama-2-7b-pruned50-retrained](https://huggingface.co/neuralmagic/Llama-2-7b-pruned70-retrained) on a blend of [Open Platypus](https://huggingface.co/datasets/garage-bAInd/Open-Platypus), 10% [Open Orca](https://huggingface.co/datasets/Open-Orca/OpenOrca) and 10% [Dolphin](https://huggingface.co/datasets/cognitivecomputations/dolphin) datasets. Training was perfomerd for 6 epochs. ## Help For further support, and discussions on these models and AI in general, join [Neural Magic's Slack Community](https://join.slack.com/t/discuss-neuralmagic/shared_invite/zt-q1a1cnvo-YBoICSIw3L1dmQpjBeDurQ)