mgoin commited on
Commit
8ce9835
1 Parent(s): edfd923

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +65 -0
README.md ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: neuralmagic/Llama-2-7b-pruned50-retrained-ultrachat
3
+ inference: false
4
+ model_type: llama
5
+ pipeline_tag: text-generation
6
+ datasets:
7
+ - cerebras/SlimPajama-627B
8
+ - HuggingFaceH4/ultrachat_200k
9
+ tags:
10
+ - sparse
11
+ - chat
12
+ - deepsparse
13
+ ---
14
+
15
+ # Llama-2-7b-pruned50-retrained-ultrachat-quant-ds
16
+
17
+ This repo contains a [50% sparse Llama 2 7B](https://huggingface.co/neuralmagic/Llama-2-7b-pruned50-retrained) finetuned for chat tasks using the [UltraChat 200k](https://huggingface.co/datasets/HuggingFaceH4/ultrachat_200k) dataset.
18
+ It was then quantized to 8-bit weights + activations and exported to deploy with [DeepSparse](https://github.com/neuralmagic/deepsparse), a CPU inference runtime for sparse models.
19
+
20
+ **Authors**: Neural Magic, Cerebras
21
+
22
+ ## Usage
23
+
24
+ Below we share some code snippets on how to get quickly started with running the model.
25
+
26
+ ### Sparse Transfer
27
+
28
+ By leveraging a pre-sparsified model's structure, you can efficiently fine-tune on new data, leading to reduced hyperparameter tuning, training times, and computational costs. Learn about this process [here](https://neuralmagic.github.io/docs-v2/get-started/transfer).
29
+
30
+ ### Running the model
31
+
32
+ For accelerated inference with sparsity on CPUs, deploy with [deepsparse](https://github.com/neuralmagic/deepsparse).
33
+
34
+ ```python
35
+ # pip install deepsparse[llm]
36
+ from deepsparse import TextGeneration
37
+
38
+ model = TextGeneration(model_path="hf:neuralmagic/Llama-2-7b-pruned50-retrained-ultrachat-quant-ds")
39
+
40
+ input_text = "Write me a poem about Machine Learning."
41
+ outputs = model(formatted_prompt, max_new_tokens=100)
42
+ print(outputs.generations[0].text)
43
+ ```
44
+
45
+ ## Evaluation Benchmark Results
46
+
47
+ Model evaluation metrics and results.
48
+
49
+ | Benchmark | Metric | Llama-2-7b-ultrachat | Llama-2-7b-pruned50-retrained-ultrachat-quant-ds |
50
+ |------------------------------------------------|---------------|-------------|-------------------------------|
51
+ | [MMLU](https://arxiv.org/abs/2009.03300) | 5-shot, top-1 | xxxx | xxxx |
52
+ | [HellaSwag](https://arxiv.org/abs/1905.07830) | 0-shot | xxxx | xxxx |
53
+ | [WinoGrande](https://arxiv.org/abs/1907.10641) | partial score | xxxx | xxxx |
54
+ | [ARC-c](https://arxiv.org/abs/1911.01547) | | xxxx | xxxx |
55
+ | [TruthfulQA](https://arxiv.org/abs/2109.07958) | 5-shot | xxxx | xxxx |
56
+ | [HumanEval](https://arxiv.org/abs/2107.03374) | pass@1 | xxxx | xxxx |
57
+ | [GSM8K](https://arxiv.org/abs/2110.14168) | maj@1 | xxxx | xxxx |
58
+
59
+ ## Model Training Details
60
+
61
+ Coming soon.
62
+
63
+ ## Help
64
+
65
+ For further support, and discussions on these models and AI in general, join [Neural Magic's Slack Community](https://join.slack.com/t/discuss-neuralmagic/shared_invite/zt-q1a1cnvo-YBoICSIw3L1dmQpjBeDurQ)