Update README.md
Browse files
README.md
CHANGED
@@ -2,21 +2,92 @@
|
|
2 |
tags:
|
3 |
- fp8
|
4 |
- vllm
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
---
|
6 |
|
7 |
-
|
8 |
-
|
9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
```
|
11 |
|
12 |
-
|
13 |
|
14 |
```
|
15 |
-
|
16 |
```
|
17 |
|
18 |
## Creation
|
19 |
-
|
|
|
20 |
|
21 |
```python
|
22 |
from transformers import AutoProcessor, MllamaForConditionalGeneration
|
@@ -52,4 +123,12 @@ input_ids = processor(text="Hello my name is", return_tensors="pt").input_ids.to
|
|
52 |
output = model.generate(input_ids, max_new_tokens=20)
|
53 |
print(processor.decode(output[0]))
|
54 |
print("==========================================")
|
55 |
-
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
tags:
|
3 |
- fp8
|
4 |
- vllm
|
5 |
+
language:
|
6 |
+
- en
|
7 |
+
- de
|
8 |
+
- fr
|
9 |
+
- it
|
10 |
+
- pt
|
11 |
+
- hi
|
12 |
+
- es
|
13 |
+
- th
|
14 |
+
pipeline_tag: text-generation
|
15 |
+
license: llama3.2
|
16 |
+
base_model: meta-llama/Llama-3.2-11B-Vision-Instruct
|
17 |
---
|
18 |
|
19 |
+
# Llama-3.2-11B-Vision-Instruct-FP8-dynamic
|
20 |
+
|
21 |
+
## Model Overview
|
22 |
+
- **Model Architecture:** Meta-Llama-3.2
|
23 |
+
- **Input:** Text/Image
|
24 |
+
- **Output:** Text
|
25 |
+
- **Model Optimizations:**
|
26 |
+
- **Weight quantization:** FP8
|
27 |
+
- **Activation quantization:** FP8
|
28 |
+
- **Intended Use Cases:** Intended for commercial and research use in multiple languages. Similarly to [Llama-3.2-11B-Vision-Instruct](https://huggingface.co/meta-llama/Llama-3.2-11B-Vision-Instruct), this models is intended for assistant-like chat.
|
29 |
+
- **Out-of-scope:** Use in any manner that violates applicable laws or regulations (including trade compliance laws). Use in languages other than English.
|
30 |
+
- **Release Date:** 9/25/2024
|
31 |
+
- **Version:** 1.0
|
32 |
+
- **License(s):** [llama3.2](https://huggingface.co/meta-llama/Llama-3.2-11B-Vision-Instruct/blob/main/LICENSE.txt)
|
33 |
+
- **Model Developers:** Neural Magic
|
34 |
+
|
35 |
+
Quantized version of [Llama-3.2-11B-Vision-Instruct](https://huggingface.co/meta-llama/Llama-3.2-11B-Vision-Instruct).
|
36 |
+
|
37 |
+
### Model Optimizations
|
38 |
+
|
39 |
+
This model was obtained by quantizing the weights and activations of [Llama-3.2-11B-Vision-Instruct](https://huggingface.co/meta-llama/Llama-3.2-11B-Vision-Instruct) to FP8 data type, ready for inference with vLLM built from source.
|
40 |
+
This optimization reduces the number of bits per parameter from 16 to 8, reducing the disk size and GPU memory requirements by approximately 50%.
|
41 |
+
|
42 |
+
Only the weights and activations of the linear operators within transformers blocks are quantized. Symmetric per-channel quantization is applied, in which a linear scaling per output dimension maps the FP8 representations of the quantized weights and activations. Activations are also quantized on a per-token dynamic basis.
|
43 |
+
[LLM Compressor](https://github.com/vllm-project/llm-compressor) is used for quantization.
|
44 |
+
|
45 |
+
## Deployment
|
46 |
+
|
47 |
+
### Use with vLLM
|
48 |
+
|
49 |
+
This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below.
|
50 |
+
|
51 |
+
```python
|
52 |
+
from vllm import LLM, SamplingParams
|
53 |
+
from vllm.assets.image import ImageAsset
|
54 |
+
|
55 |
+
# Initialize the LLM
|
56 |
+
model_name = "neuralmagic/Llama-3.2-11B-Vision-Instruct-FP8-dynamic"
|
57 |
+
llm = LLM(model=model_name, max_num_seqs=1, enforce_eager=True)
|
58 |
+
|
59 |
+
# Load the image
|
60 |
+
image = ImageAsset("cherry_blossom").pil_image.convert("RGB")
|
61 |
+
|
62 |
+
# Create the prompt
|
63 |
+
question = "If I had to write a haiku for this one, it would be: "
|
64 |
+
prompt = f"<|image|><|begin_of_text|>{question}"
|
65 |
+
|
66 |
+
# Set up sampling parameters
|
67 |
+
sampling_params = SamplingParams(temperature=0.2, max_tokens=30)
|
68 |
+
|
69 |
+
# Generate the response
|
70 |
+
inputs = {
|
71 |
+
"prompt": prompt,
|
72 |
+
"multi_modal_data": {
|
73 |
+
"image": image
|
74 |
+
},
|
75 |
+
}
|
76 |
+
outputs = llm.generate(inputs, sampling_params=sampling_params)
|
77 |
+
|
78 |
+
# Print the generated text
|
79 |
+
print(outputs[0].outputs[0].text)
|
80 |
```
|
81 |
|
82 |
+
vLLM also supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details.
|
83 |
|
84 |
```
|
85 |
+
vllm serve neuralmagic/Llama-3.2-11B-Vision-Instruct-FP8-dynamic --enforce-eager --max-num-seqs 16
|
86 |
```
|
87 |
|
88 |
## Creation
|
89 |
+
|
90 |
+
This model was created by applying [LLM Compressor](https://github.com/vllm-project/llm-compressor/blob/f90013702b15bd1690e4e2fe9ed434921b6a6199/examples/quantization_w8a8_fp8/llama3.2_vision_example.py), as presented in the code snipet below.
|
91 |
|
92 |
```python
|
93 |
from transformers import AutoProcessor, MllamaForConditionalGeneration
|
|
|
123 |
output = model.generate(input_ids, max_new_tokens=20)
|
124 |
print(processor.decode(output[0]))
|
125 |
print("==========================================")
|
126 |
+
```
|
127 |
+
|
128 |
+
## Evaluation
|
129 |
+
|
130 |
+
TBD
|
131 |
+
|
132 |
+
### Reproduction
|
133 |
+
|
134 |
+
TBD
|