File size: 7,204 Bytes
0b0dbe1
 
 
 
 
 
 
 
 
 
f18b9c8
0b0dbe1
 
 
 
 
 
 
 
 
 
2b63bb8
0b0dbe1
 
 
 
03ac659
 
0b0dbe1
 
 
f18b9c8
 
0b0dbe1
 
 
 
 
 
 
 
 
 
 
 
 
 
f18b9c8
 
0b0dbe1
 
 
 
 
 
 
 
 
 
 
 
aace9b8
0b0dbe1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f18b9c8
0b0dbe1
 
 
f18b9c8
0b0dbe1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f18b9c8
0b0dbe1
 
 
e32ba06
0b0dbe1
 
 
 
 
 
 
 
f18b9c8
0b0dbe1
f18b9c8
0b0dbe1
 
 
 
 
 
 
e32ba06
0b0dbe1
6c0fcdd
0b0dbe1
e32ba06
0b0dbe1
 
 
 
 
e32ba06
0b0dbe1
e32ba06
0b0dbe1
e32ba06
0b0dbe1
 
 
 
 
e32ba06
0b0dbe1
e32ba06
0b0dbe1
e32ba06
0b0dbe1
 
 
 
 
e32ba06
0b0dbe1
e32ba06
0b0dbe1
e32ba06
0b0dbe1
 
 
 
 
e32ba06
0b0dbe1
e32ba06
0b0dbe1
e32ba06
0b0dbe1
 
 
 
 
894589f
0b0dbe1
e32ba06
0b0dbe1
894589f
0b0dbe1
 
 
 
 
e32ba06
0b0dbe1
e32ba06
0b0dbe1
894589f
0b0dbe1
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
---
tags:
- fp8
- vllm
license: llama3.1
license_link: https://huggingface.co/meta-llama/Meta-Llama-3.1-8B/blob/main/LICENSE
language:
- en
---

# Meta-Llama-3.1-405B-Instruct-FP8-dynamic

## Model Overview
- **Model Architecture:** Meta-Llama-3.1
  - **Input:** Text
  - **Output:** Text
- **Model Optimizations:**
  - **Weight quantization:** FP8
  - **Activation quantization:** FP8
- **Intended Use Cases:** Intended for commercial and research use in English. Similarly to [Meta-Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct), this models is intended for assistant-like chat.
- **Out-of-scope:** Use in any manner that violates applicable laws or regulations (including trade compliance laws). Use in languages other than English.
- **Release Date:** 7/24/2024
- **Version:** 1.0
- **License(s):** [llama3.1](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B/blob/main/LICENSE)
- **Model Developers:** Neural Magic

Quantized version of [Meta-Llama-3.1-405B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-405B-Instruct). It achieves an average recovery of 99.82% on the [OpenLLM](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) benchmark (version 1), compared to the unquantized model.
<!-- It achieves an average score of 78.69 on the [OpenLLM](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) benchmark (version 1), whereas the unquantized model achieves 78.67. -->

### Model Optimizations

This model was obtained by quantizing the weights and activations of [Meta-Llama-3.1-405B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-405B-Instruct) to FP8 data type, ready for inference with vLLM built from source.
This optimization reduces the number of bits per parameter from 16 to 8, reducing the disk size and GPU memory requirements by approximately 50%. In particular, this model can now be loaded and evaluated with a single node of 8xH100 GPUs, as opposed to multiple nodes.

Only the weights and activations of the linear operators within transformers blocks are quantized. Symmetric per-channel quantization is applied, in which a linear scaling per output dimension maps the FP8 representations of the quantized weights and activations. Activations are also quantized on a per-token dynamic basis.
[LLM Compressor](https://github.com/vllm-project/llm-compressor) is used for quantization with 512 sequences of UltraChat.

## Deployment

### Use with vLLM

This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below.

```python
from vllm import LLM, SamplingParams
from transformers import AutoTokenizer

model_id = "neuralmagic/Meta-Llama-3.1-405B-Instruct-FP8-dynamic"
number_gpus = 8

sampling_params = SamplingParams(temperature=0.6, top_p=0.9, max_tokens=256)

tokenizer = AutoTokenizer.from_pretrained(model_id)

messages = [
    {"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
    {"role": "user", "content": "Who are you?"},
]

prompts = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=False)

llm = LLM(model=model_id, tensor_parallel_size=number_gpus, max_model_len=4096)

outputs = llm.generate(prompts, sampling_params)

generated_text = outputs[0].outputs[0].text
print(generated_text)
```

vLLM aslo supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details.

## Creation

This model was created by applying [LLM Compressor with calibration samples from UltraChat](https://github.com/vllm-project/llm-compressor/blob/sa/big_model_support/examples/big_model_offloading/big_model_w8a8_calibrate.py), as presented in the code snipet below.

```python
import torch

from transformers import AutoTokenizer

from llmcompressor.transformers import SparseAutoModelForCausalLM, oneshot
from llmcompressor.transformers.compression.helpers import (  # noqa
    calculate_offload_device_map,
    custom_offload_device_map,
)

recipe = """
quant_stage:
    quant_modifiers:
        QuantizationModifier:
            ignore: ["lm_head"]
            config_groups:
                group_0:
                    weights:
                        num_bits: 8
                        type: float
                        strategy: channel
                        dynamic: false
                        symmetric: true
                    input_activations:
                        num_bits: 8
                        type: float
                        strategy: token
                        dynamic: true
                        symmetric: true
                    targets: ["Linear"]
"""

model_stub = "meta-llama/Meta-Llama-3.1-405B-Instruct"
model_name = model_stub.split("/")[-1]

device_map = calculate_offload_device_map(
    model_stub, reserve_for_hessians=False, num_gpus=8, torch_dtype=torch.float16
)

model = SparseAutoModelForCausalLM.from_pretrained(
    model_stub, torch_dtype=torch.float16, device_map=device_map
)

output_dir = f"./{model_name}-FP8-dynamic"

oneshot(
    model=model,
    recipe=recipe,
    output_dir=output_dir,
    save_compressed=True,
    tokenizer=AutoTokenizer.from_pretrained(model_stub),
)
```

## Evaluation

The model was evaluated on the [OpenLLM](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) leaderboard tasks (version 1) with the [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness) and the [vLLM](https://docs.vllm.ai/en/stable/) engine, using the following command:
```
lm_eval \
  --model vllm \
  --model_args pretrained="neuralmagic/Meta-Llama-3.1-405B-Instruct-FP8-dynamic",dtype=auto,tensor_parallel_size=8,gpu_memory_utilization=0.755,add_bos_token=True,max_model_len=4096 \
  --tasks openllm \
  --batch_size auto
```
Certain benchmarks for the full precision model are still being acquired. Average recovery is calculated only with metrics that both models have been evaluated on.

### Accuracy

#### Open LLM Leaderboard evaluation scores
<table>
  <tr>
   <td><strong>Benchmark</strong>
   </td>
   <td><strong>Meta-Llama-3.1-405B-Instruct </strong>
   </td>
   <td><strong>Meta-Llama-3.1-405B-Instruct-FP8-dynamic(this model)</strong>
   </td>
   <td><strong>Recovery</strong>
   </td>
  </tr>
  <tr>
   <td>MMLU (5-shot)
   </td>
   <td>*
   </td>
   <td>86.17
   </td>
   <td>*
   </td>
  </tr>
  <tr>
   <td>ARC Challenge (25-shot)
   </td>
   <td>73.38
   </td>
   <td>72.61
   </td>
   <td>98.95%
   </td>
  </tr>
  <tr>
   <td>GSM-8K (5-shot, strict-match)
   </td>
   <td>95.07
   </td>
   <td>95.00
   </td>
   <td>99.93%
   </td>
  </tr>
  <tr>
   <td>Hellaswag (10-shot)
   </td>
   <td>*
   </td>
   <td>88.34
   </td>
   <td>*
   </td>
  </tr>
  <tr>
   <td>Winogrande (5-shot)
   </td>
   <td>87.21
   </td>
   <td>87.45
   </td>
   <td>100.2%
   </td>
  </tr>
  <tr>
   <td>TruthfulQA (0-shot)
   </td>
   <td>64.64
   </td>
   <td>64.71
   </td>
   <td>100.1%
   </td>
  </tr>
  <tr>
   <td><strong>Average</strong>
   </td>
   <td><strong>*</strong>
   </td>
   <td><strong>82.38</strong>
   </td>
   <td><strong>99.82%</strong>
   </td>
  </tr>
</table>