Lin-K76 commited on
Commit
2872cfa
·
verified ·
1 Parent(s): c7a1cae

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +17 -23
README.md CHANGED
@@ -24,7 +24,7 @@ language:
24
  - **License(s):** [llama3.1](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B/blob/main/LICENSE)
25
  - **Model Developers:** Neural Magic
26
 
27
- Quantized version of [Meta-Llama-3.1-405B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-405B-Instruct). It achieves an average recovery of 100.1% on the [OpenLLM](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) benchmark (version 1), compared to the unquantized model.
28
  <!-- It achieves an average score of 78.69 on the [OpenLLM](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) benchmark (version 1), whereas the unquantized model achieves 78.67. -->
29
 
30
  ### Model Optimizations
@@ -130,15 +130,9 @@ oneshot(
130
 
131
  ## Evaluation
132
 
133
- The model was evaluated on the [OpenLLM](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) leaderboard tasks (version 1) with the [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness) and the [vLLM](https://docs.vllm.ai/en/stable/) engine, using the following command:
134
- ```
135
- lm_eval \
136
- --model vllm \
137
- --model_args pretrained="neuralmagic/Meta-Llama-3.1-405B-Instruct-FP8-dynamic",dtype=auto,tensor_parallel_size=8,gpu_memory_utilization=0.755,add_bos_token=True,max_model_len=4096 \
138
- --tasks openllm \
139
- --batch_size auto
140
- ```
141
- Certain benchmarks for the full precision model are still being acquired. Average recovery is calculated only with metrics that both models have been evaluated on.
142
 
143
  ### Accuracy
144
 
@@ -157,41 +151,41 @@ Certain benchmarks for the full precision model are still being acquired. Averag
157
  <tr>
158
  <td>MMLU (5-shot)
159
  </td>
160
- <td>*
161
  </td>
162
  <td>86.17
163
  </td>
164
- <td>*
165
  </td>
166
  </tr>
167
  <tr>
168
- <td>ARC Challenge (25-shot)
169
  </td>
170
- <td>*
171
  </td>
172
- <td>*
173
  </td>
174
  <td>*
175
  </td>
176
  </tr>
177
  <tr>
178
- <td>GSM-8K (5-shot, strict-match)
179
  </td>
180
- <td>95.07
181
  </td>
182
- <td>95.00
183
  </td>
184
- <td>99.93%
185
  </td>
186
  </tr>
187
  <tr>
188
  <td>Hellaswag (10-shot)
189
  </td>
190
- <td>*
191
  </td>
192
  <td>88.34
193
  </td>
194
- <td>*
195
  </td>
196
  </tr>
197
  <tr>
@@ -217,11 +211,11 @@ Certain benchmarks for the full precision model are still being acquired. Averag
217
  <tr>
218
  <td><strong>Average</strong>
219
  </td>
220
- <td><strong>*</strong>
221
  </td>
222
  <td><strong>*</strong>
223
  </td>
224
- <td><strong>100.1%</strong>
225
  </td>
226
  </tr>
227
  </table>
 
24
  - **License(s):** [llama3.1](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B/blob/main/LICENSE)
25
  - **Model Developers:** Neural Magic
26
 
27
+ Quantized version of [Meta-Llama-3.1-405B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-405B-Instruct). It achieves an average recovery of 99.97% on the [OpenLLM](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) benchmark (version 1), compared to the unquantized model.
28
  <!-- It achieves an average score of 78.69 on the [OpenLLM](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) benchmark (version 1), whereas the unquantized model achieves 78.67. -->
29
 
30
  ### Model Optimizations
 
130
 
131
  ## Evaluation
132
 
133
+ The model was evaluated on MMLU, ARC-Challenge, GSM-8K, Hellaswag, Winogrande and TruthfulQA.
134
+ Evaluation was conducted using the Neural Magic fork of [lm-evaluation-harness](https://github.com/neuralmagic/lm-evaluation-harness/tree/llama_3.1_instruct) (branch llama_3.1_instruct) and the [vLLM](https://docs.vllm.ai/en/stable/) engine.
135
+ This version of the lm-evaluation-harness includes versions of ARC-Challenge and GSM-8K that match the prompting style of [Meta-Llama-3.1-Instruct-evals](https://huggingface.co/datasets/meta-llama/Meta-Llama-3.1-8B-Instruct-evals).
 
 
 
 
 
 
136
 
137
  ### Accuracy
138
 
 
151
  <tr>
152
  <td>MMLU (5-shot)
153
  </td>
154
+ <td>86.25
155
  </td>
156
  <td>86.17
157
  </td>
158
+ <td>99.91%
159
  </td>
160
  </tr>
161
  <tr>
162
+ <td>ARC Challenge (0-shot)
163
  </td>
164
+ <td>96.93
165
  </td>
166
+ <td>*being collected
167
  </td>
168
  <td>*
169
  </td>
170
  </tr>
171
  <tr>
172
+ <td>GSM-8K-cot (8-shot, strict-match)
173
  </td>
174
+ <td>96.44
175
  </td>
176
+ <td>95.98
177
  </td>
178
+ <td>99.52%
179
  </td>
180
  </tr>
181
  <tr>
182
  <td>Hellaswag (10-shot)
183
  </td>
184
+ <td>88.33
185
  </td>
186
  <td>88.34
187
  </td>
188
+ <td>100.0%
189
  </td>
190
  </tr>
191
  <tr>
 
211
  <tr>
212
  <td><strong>Average</strong>
213
  </td>
214
+ <td><strong>86.63</strong>
215
  </td>
216
  <td><strong>*</strong>
217
  </td>
218
+ <td><strong>99.97%</strong>
219
  </td>
220
  </tr>
221
  </table>