Update README.md
Browse files
README.md
CHANGED
@@ -24,7 +24,7 @@ language:
|
|
24 |
- **License(s):** [llama3.1](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B/blob/main/LICENSE)
|
25 |
- **Model Developers:** Neural Magic
|
26 |
|
27 |
-
Quantized version of [Meta-Llama-3.1-405B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-405B-Instruct). It achieves an average recovery of
|
28 |
<!-- It achieves an average score of 78.69 on the [OpenLLM](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) benchmark (version 1), whereas the unquantized model achieves 78.67. -->
|
29 |
|
30 |
### Model Optimizations
|
@@ -130,15 +130,9 @@ oneshot(
|
|
130 |
|
131 |
## Evaluation
|
132 |
|
133 |
-
The model was evaluated on
|
134 |
-
|
135 |
-
|
136 |
-
--model vllm \
|
137 |
-
--model_args pretrained="neuralmagic/Meta-Llama-3.1-405B-Instruct-FP8-dynamic",dtype=auto,tensor_parallel_size=8,gpu_memory_utilization=0.755,add_bos_token=True,max_model_len=4096 \
|
138 |
-
--tasks openllm \
|
139 |
-
--batch_size auto
|
140 |
-
```
|
141 |
-
Certain benchmarks for the full precision model are still being acquired. Average recovery is calculated only with metrics that both models have been evaluated on.
|
142 |
|
143 |
### Accuracy
|
144 |
|
@@ -157,41 +151,41 @@ Certain benchmarks for the full precision model are still being acquired. Averag
|
|
157 |
<tr>
|
158 |
<td>MMLU (5-shot)
|
159 |
</td>
|
160 |
-
<td
|
161 |
</td>
|
162 |
<td>86.17
|
163 |
</td>
|
164 |
-
<td
|
165 |
</td>
|
166 |
</tr>
|
167 |
<tr>
|
168 |
-
<td>ARC Challenge (
|
169 |
</td>
|
170 |
-
<td
|
171 |
</td>
|
172 |
-
<td>*
|
173 |
</td>
|
174 |
<td>*
|
175 |
</td>
|
176 |
</tr>
|
177 |
<tr>
|
178 |
-
<td>GSM-8K (
|
179 |
</td>
|
180 |
-
<td>
|
181 |
</td>
|
182 |
-
<td>95.
|
183 |
</td>
|
184 |
-
<td>99.
|
185 |
</td>
|
186 |
</tr>
|
187 |
<tr>
|
188 |
<td>Hellaswag (10-shot)
|
189 |
</td>
|
190 |
-
<td
|
191 |
</td>
|
192 |
<td>88.34
|
193 |
</td>
|
194 |
-
<td
|
195 |
</td>
|
196 |
</tr>
|
197 |
<tr>
|
@@ -217,11 +211,11 @@ Certain benchmarks for the full precision model are still being acquired. Averag
|
|
217 |
<tr>
|
218 |
<td><strong>Average</strong>
|
219 |
</td>
|
220 |
-
<td><strong
|
221 |
</td>
|
222 |
<td><strong>*</strong>
|
223 |
</td>
|
224 |
-
<td><strong>
|
225 |
</td>
|
226 |
</tr>
|
227 |
</table>
|
|
|
24 |
- **License(s):** [llama3.1](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B/blob/main/LICENSE)
|
25 |
- **Model Developers:** Neural Magic
|
26 |
|
27 |
+
Quantized version of [Meta-Llama-3.1-405B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-405B-Instruct). It achieves an average recovery of 99.97% on the [OpenLLM](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) benchmark (version 1), compared to the unquantized model.
|
28 |
<!-- It achieves an average score of 78.69 on the [OpenLLM](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) benchmark (version 1), whereas the unquantized model achieves 78.67. -->
|
29 |
|
30 |
### Model Optimizations
|
|
|
130 |
|
131 |
## Evaluation
|
132 |
|
133 |
+
The model was evaluated on MMLU, ARC-Challenge, GSM-8K, Hellaswag, Winogrande and TruthfulQA.
|
134 |
+
Evaluation was conducted using the Neural Magic fork of [lm-evaluation-harness](https://github.com/neuralmagic/lm-evaluation-harness/tree/llama_3.1_instruct) (branch llama_3.1_instruct) and the [vLLM](https://docs.vllm.ai/en/stable/) engine.
|
135 |
+
This version of the lm-evaluation-harness includes versions of ARC-Challenge and GSM-8K that match the prompting style of [Meta-Llama-3.1-Instruct-evals](https://huggingface.co/datasets/meta-llama/Meta-Llama-3.1-8B-Instruct-evals).
|
|
|
|
|
|
|
|
|
|
|
|
|
136 |
|
137 |
### Accuracy
|
138 |
|
|
|
151 |
<tr>
|
152 |
<td>MMLU (5-shot)
|
153 |
</td>
|
154 |
+
<td>86.25
|
155 |
</td>
|
156 |
<td>86.17
|
157 |
</td>
|
158 |
+
<td>99.91%
|
159 |
</td>
|
160 |
</tr>
|
161 |
<tr>
|
162 |
+
<td>ARC Challenge (0-shot)
|
163 |
</td>
|
164 |
+
<td>96.93
|
165 |
</td>
|
166 |
+
<td>*being collected
|
167 |
</td>
|
168 |
<td>*
|
169 |
</td>
|
170 |
</tr>
|
171 |
<tr>
|
172 |
+
<td>GSM-8K-cot (8-shot, strict-match)
|
173 |
</td>
|
174 |
+
<td>96.44
|
175 |
</td>
|
176 |
+
<td>95.98
|
177 |
</td>
|
178 |
+
<td>99.52%
|
179 |
</td>
|
180 |
</tr>
|
181 |
<tr>
|
182 |
<td>Hellaswag (10-shot)
|
183 |
</td>
|
184 |
+
<td>88.33
|
185 |
</td>
|
186 |
<td>88.34
|
187 |
</td>
|
188 |
+
<td>100.0%
|
189 |
</td>
|
190 |
</tr>
|
191 |
<tr>
|
|
|
211 |
<tr>
|
212 |
<td><strong>Average</strong>
|
213 |
</td>
|
214 |
+
<td><strong>86.63</strong>
|
215 |
</td>
|
216 |
<td><strong>*</strong>
|
217 |
</td>
|
218 |
+
<td><strong>99.97%</strong>
|
219 |
</td>
|
220 |
</tr>
|
221 |
</table>
|