alexmarques
commited on
Commit
•
3188a5c
1
Parent(s):
c2358a5
Update README.md
Browse files
README.md
CHANGED
@@ -25,15 +25,16 @@ base_model: meta-llama/Meta-Llama-3.1-405B-Instruct
|
|
25 |
- **Model Optimizations:**
|
26 |
- **Weight quantization:** FP8
|
27 |
- **Activation quantization:** FP8
|
28 |
-
- **Intended Use Cases:** Intended for commercial and research use in multiple languages. Similarly to [Meta-Llama-3.1-
|
29 |
- **Out-of-scope:** Use in any manner that violates applicable laws or regulations (including trade compliance laws). Use in languages other than English.
|
30 |
- **Release Date:** 8/22/2024
|
31 |
- **Version:** 1.1
|
32 |
- **License(s):** [llama3.1](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B/blob/main/LICENSE)
|
33 |
- **Model Developers:** Neural Magic
|
34 |
|
35 |
-
|
36 |
-
It
|
|
|
37 |
|
38 |
### Model Optimizations
|
39 |
|
@@ -138,9 +139,19 @@ oneshot(
|
|
138 |
|
139 |
## Evaluation
|
140 |
|
141 |
-
|
142 |
-
|
143 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
144 |
|
145 |
### Accuracy
|
146 |
|
@@ -151,17 +162,31 @@ This version of the lm-evaluation-harness includes versions of ARC-Challenge, GS
|
|
151 |
</td>
|
152 |
<td><strong>Meta-Llama-3.1-405B-Instruct </strong>
|
153 |
</td>
|
154 |
-
<td><strong>Meta-Llama-3.1-405B-Instruct-FP8-dynamic(this model)</strong>
|
155 |
</td>
|
156 |
<td><strong>Recovery</strong>
|
157 |
</td>
|
158 |
</tr>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
159 |
<tr>
|
160 |
<td>MMLU (5-shot)
|
161 |
</td>
|
162 |
-
<td>87.
|
163 |
</td>
|
164 |
-
<td>87.
|
165 |
</td>
|
166 |
<td>100.0%
|
167 |
</td>
|
@@ -169,9 +194,9 @@ This version of the lm-evaluation-harness includes versions of ARC-Challenge, GS
|
|
169 |
<tr>
|
170 |
<td>MMLU-cot (0-shot)
|
171 |
</td>
|
172 |
-
<td>88.
|
173 |
</td>
|
174 |
-
<td>88.
|
175 |
</td>
|
176 |
<td>100.0%
|
177 |
</td>
|
@@ -179,9 +204,9 @@ This version of the lm-evaluation-harness includes versions of ARC-Challenge, GS
|
|
179 |
<tr>
|
180 |
<td>ARC Challenge (0-shot)
|
181 |
</td>
|
182 |
-
<td>
|
183 |
</td>
|
184 |
-
<td>
|
185 |
</td>
|
186 |
<td>100.0%
|
187 |
</td>
|
@@ -189,29 +214,29 @@ This version of the lm-evaluation-harness includes versions of ARC-Challenge, GS
|
|
189 |
<tr>
|
190 |
<td>GSM-8K-cot (8-shot, strict-match)
|
191 |
</td>
|
192 |
-
<td>
|
193 |
</td>
|
194 |
-
<td>95.
|
195 |
</td>
|
196 |
-
<td>99.
|
197 |
</td>
|
198 |
</tr>
|
199 |
<tr>
|
200 |
<td>Hellaswag (10-shot)
|
201 |
</td>
|
202 |
-
<td>88.
|
203 |
</td>
|
204 |
-
<td>88.
|
205 |
</td>
|
206 |
-
<td>99.
|
207 |
</td>
|
208 |
</tr>
|
209 |
<tr>
|
210 |
<td>Winogrande (5-shot)
|
211 |
</td>
|
212 |
-
<td>87.
|
213 |
</td>
|
214 |
-
<td>88.
|
215 |
</td>
|
216 |
<td>100.9%
|
217 |
</td>
|
@@ -219,23 +244,121 @@ This version of the lm-evaluation-harness includes versions of ARC-Challenge, GS
|
|
219 |
<tr>
|
220 |
<td>TruthfulQA (0-shot, mc2)
|
221 |
</td>
|
222 |
-
<td>65.
|
223 |
</td>
|
224 |
-
<td>65.
|
225 |
</td>
|
226 |
-
<td>99.
|
227 |
</td>
|
228 |
</tr>
|
229 |
<tr>
|
230 |
<td><strong>Average</strong>
|
231 |
</td>
|
232 |
-
<td><strong>86.
|
233 |
</td>
|
234 |
-
<td><strong>86.
|
235 |
</td>
|
236 |
<td><strong>100.0%</strong>
|
237 |
</td>
|
238 |
</tr>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
239 |
</table>
|
240 |
|
241 |
|
@@ -317,4 +440,39 @@ lm_eval \
|
|
317 |
--tasks truthfulqa \
|
318 |
--num_fewshot 0 \
|
319 |
--batch_size auto
|
320 |
-
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
- **Model Optimizations:**
|
26 |
- **Weight quantization:** FP8
|
27 |
- **Activation quantization:** FP8
|
28 |
+
- **Intended Use Cases:** Intended for commercial and research use in multiple languages. Similarly to [Meta-Llama-3.1-405B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-405B-Instruct), this models is intended for assistant-like chat.
|
29 |
- **Out-of-scope:** Use in any manner that violates applicable laws or regulations (including trade compliance laws). Use in languages other than English.
|
30 |
- **Release Date:** 8/22/2024
|
31 |
- **Version:** 1.1
|
32 |
- **License(s):** [llama3.1](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B/blob/main/LICENSE)
|
33 |
- **Model Developers:** Neural Magic
|
34 |
|
35 |
+
This model is a quantized version of [Meta-Llama-3.1-405B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-405B-Instruct).
|
36 |
+
It was evaluated on a several tasks to assess the its quality in comparison to the unquatized model, including multiple-choice, math reasoning, and open-ended text generation.
|
37 |
+
Meta-Llama-3.1-405B-Instruct-FP8-dynamic achieves 99.0% recovery for the Arena-Hard evaluation, 100.0% for OpenLLM v1 (using Meta's prompting when available), 99.9% for OpenLLM v2, 100.2% for HumanEval pass@1, and 101.1% for HumanEval+ pass@1.
|
38 |
|
39 |
### Model Optimizations
|
40 |
|
|
|
139 |
|
140 |
## Evaluation
|
141 |
|
142 |
+
This model was evaluated on the well-known Arena-Hard, OpenLLM v1, OpenLLM v2, HumanEval, and HumanEval+ benchmarks.
|
143 |
+
In all cases, model outputs were generated with the [vLLM](https://docs.vllm.ai/en/stable/) engine.
|
144 |
+
|
145 |
+
Arena-Hard evaluations were conducted using the [Arena-Hard-Auto](https://github.com/lmarena/arena-hard-auto) repository.
|
146 |
+
The model generated a single answer for each prompt form Arena-Hard, and each answer was judged twice by GPT-4.
|
147 |
+
We report below the scores obtained in each judgement and the average.
|
148 |
+
|
149 |
+
OpenLLM v1 and v2 evaluations were conducted using Neural Magic's fork of [lm-evaluation-harness](https://github.com/neuralmagic/lm-evaluation-harness/tree/llama_3.1_instruct) (branch llama_3.1_instruct).
|
150 |
+
This version of the lm-evaluation-harness includes versions of MMLU, ARC-Challenge and GSM-8K that match the prompting style of [Meta-Llama-3.1-Instruct-evals](https://huggingface.co/datasets/meta-llama/Meta-Llama-3.1-70B-Instruct-evals) and a few fixes to OpenLLM v2 tasks.
|
151 |
+
|
152 |
+
HumanEval and HumanEval+ evaluations were conducted using Neural Magic's fork of the [EvalPlus](https://github.com/neuralmagic/evalplus) repository.
|
153 |
+
|
154 |
+
Detailed model outputs are available as HuggingFace datasets for [Arena-Hard](https://huggingface.co/datasets/neuralmagic/quantized-llama-3.1-arena-hard-evals), [OpenLLM v2](https://huggingface.co/datasets/neuralmagic/quantized-llama-3.1-leaderboard-v2-evals), and [HumanEval](https://huggingface.co/datasets/neuralmagic/quantized-llama-3.1-humaneval-evals).
|
155 |
|
156 |
### Accuracy
|
157 |
|
|
|
162 |
</td>
|
163 |
<td><strong>Meta-Llama-3.1-405B-Instruct </strong>
|
164 |
</td>
|
165 |
+
<td><strong>Meta-Llama-3.1-405B-Instruct-FP8-dynamic (this model)</strong>
|
166 |
</td>
|
167 |
<td><strong>Recovery</strong>
|
168 |
</td>
|
169 |
</tr>
|
170 |
+
<tr>
|
171 |
+
<td><strong>Arena Hard</strong>
|
172 |
+
</td>
|
173 |
+
<td>67.4 (67.3 / 67.5)
|
174 |
+
</td>
|
175 |
+
<td>66.7 (66.7 / 66.6)
|
176 |
+
</td>
|
177 |
+
<td>99.0%
|
178 |
+
</td>
|
179 |
+
</tr>
|
180 |
+
<tr>
|
181 |
+
<td><strong>OpenLLM v1</strong>
|
182 |
+
</td>
|
183 |
+
</tr>
|
184 |
<tr>
|
185 |
<td>MMLU (5-shot)
|
186 |
</td>
|
187 |
+
<td>87.4
|
188 |
</td>
|
189 |
+
<td>87.5
|
190 |
</td>
|
191 |
<td>100.0%
|
192 |
</td>
|
|
|
194 |
<tr>
|
195 |
<td>MMLU-cot (0-shot)
|
196 |
</td>
|
197 |
+
<td>88.1
|
198 |
</td>
|
199 |
+
<td>88.1
|
200 |
</td>
|
201 |
<td>100.0%
|
202 |
</td>
|
|
|
204 |
<tr>
|
205 |
<td>ARC Challenge (0-shot)
|
206 |
</td>
|
207 |
+
<td>95.0
|
208 |
</td>
|
209 |
+
<td>95.0
|
210 |
</td>
|
211 |
<td>100.0%
|
212 |
</td>
|
|
|
214 |
<tr>
|
215 |
<td>GSM-8K-cot (8-shot, strict-match)
|
216 |
</td>
|
217 |
+
<td>96.0
|
218 |
</td>
|
219 |
+
<td>95.8
|
220 |
</td>
|
221 |
+
<td>99.8%
|
222 |
</td>
|
223 |
</tr>
|
224 |
<tr>
|
225 |
<td>Hellaswag (10-shot)
|
226 |
</td>
|
227 |
+
<td>88.5
|
228 |
</td>
|
229 |
+
<td>88.5
|
230 |
</td>
|
231 |
+
<td>99.9%
|
232 |
</td>
|
233 |
</tr>
|
234 |
<tr>
|
235 |
<td>Winogrande (5-shot)
|
236 |
</td>
|
237 |
+
<td>87.2
|
238 |
</td>
|
239 |
+
<td>88.0
|
240 |
</td>
|
241 |
<td>100.9%
|
242 |
</td>
|
|
|
244 |
<tr>
|
245 |
<td>TruthfulQA (0-shot, mc2)
|
246 |
</td>
|
247 |
+
<td>65.3
|
248 |
</td>
|
249 |
+
<td>65.3
|
250 |
</td>
|
251 |
+
<td>99.9%
|
252 |
</td>
|
253 |
</tr>
|
254 |
<tr>
|
255 |
<td><strong>Average</strong>
|
256 |
</td>
|
257 |
+
<td><strong>86.8</strong>
|
258 |
</td>
|
259 |
+
<td><strong>86.9</strong>
|
260 |
</td>
|
261 |
<td><strong>100.0%</strong>
|
262 |
</td>
|
263 |
</tr>
|
264 |
+
<tr>
|
265 |
+
<td><strong>OpenLLM v2</strong>
|
266 |
+
</td>
|
267 |
+
</tr>
|
268 |
+
<tr>
|
269 |
+
<td>MMLU-Pro (5-shot)
|
270 |
+
</td>
|
271 |
+
<td>59.7
|
272 |
+
</td>
|
273 |
+
<td>59.4
|
274 |
+
</td>
|
275 |
+
<td>99.4%
|
276 |
+
</td>
|
277 |
+
</tr>
|
278 |
+
<tr>
|
279 |
+
<td>IFEval (0-shot)
|
280 |
+
</td>
|
281 |
+
<td>87.7
|
282 |
+
</td>
|
283 |
+
<td>86.8
|
284 |
+
</td>
|
285 |
+
<td>99.0%
|
286 |
+
</td>
|
287 |
+
</tr>
|
288 |
+
<tr>
|
289 |
+
<td>BBH (3-shot)
|
290 |
+
</td>
|
291 |
+
<td>67.0
|
292 |
+
</td>
|
293 |
+
<td>67.1
|
294 |
+
</td>
|
295 |
+
<td>100.1%
|
296 |
+
</td>
|
297 |
+
</tr>
|
298 |
+
<tr>
|
299 |
+
<td>Math-|v|-5 (4-shot)
|
300 |
+
</td>
|
301 |
+
<td>39.0
|
302 |
+
</td>
|
303 |
+
<td>38.8
|
304 |
+
</td>
|
305 |
+
<td>99.7%
|
306 |
+
</td>
|
307 |
+
</tr>
|
308 |
+
<tr>
|
309 |
+
<td>GPQA (0-shot)
|
310 |
+
</td>
|
311 |
+
<td>19.5
|
312 |
+
</td>
|
313 |
+
<td>19.0
|
314 |
+
</td>
|
315 |
+
<td>97.4%
|
316 |
+
</td>
|
317 |
+
</tr>
|
318 |
+
<tr>
|
319 |
+
<td>MuSR (0-shot)
|
320 |
+
</td>
|
321 |
+
<td>19.5
|
322 |
+
</td>
|
323 |
+
<td>20.8
|
324 |
+
</td>
|
325 |
+
<td>106.9%
|
326 |
+
</td>
|
327 |
+
</tr>
|
328 |
+
<tr>
|
329 |
+
<td><strong>Average</strong>
|
330 |
+
</td>
|
331 |
+
<td><strong>48.7</strong>
|
332 |
+
</td>
|
333 |
+
<td><strong>48.7</strong>
|
334 |
+
</td>
|
335 |
+
<td><strong>99.9%</strong>
|
336 |
+
</td>
|
337 |
+
</tr>
|
338 |
+
<tr>
|
339 |
+
<td><strong>Coding</strong>
|
340 |
+
</td>
|
341 |
+
</tr>
|
342 |
+
<tr>
|
343 |
+
<td>HumanEval pass@1
|
344 |
+
</td>
|
345 |
+
<td>86.8
|
346 |
+
</td>
|
347 |
+
<td>87.0
|
348 |
+
</td>
|
349 |
+
<td>100.2%
|
350 |
+
</td>
|
351 |
+
</tr>
|
352 |
+
<tr>
|
353 |
+
<td>HumanEval+ pass@1
|
354 |
+
</td>
|
355 |
+
<td>80.1
|
356 |
+
</td>
|
357 |
+
<td>81.0
|
358 |
+
</td>
|
359 |
+
<td>101.1%
|
360 |
+
</td>
|
361 |
+
</tr>
|
362 |
</table>
|
363 |
|
364 |
|
|
|
440 |
--tasks truthfulqa \
|
441 |
--num_fewshot 0 \
|
442 |
--batch_size auto
|
443 |
+
```
|
444 |
+
|
445 |
+
#### OpenLLM v2
|
446 |
+
```
|
447 |
+
lm_eval \
|
448 |
+
--model vllm \
|
449 |
+
--model_args pretrained="neuralmagic/Meta-Llama-3.1-405B-Instruct-FP8-dynamic",dtype=auto,max_model_len=4096,tensor_parallel_size=8,enable_chunked_prefill=True \
|
450 |
+
--apply_chat_template \
|
451 |
+
--fewshot_as_multiturn \
|
452 |
+
--tasks leaderboard \
|
453 |
+
--batch_size auto
|
454 |
+
```
|
455 |
+
|
456 |
+
#### HumanEval and HumanEval+
|
457 |
+
##### Generation
|
458 |
+
```
|
459 |
+
python3 codegen/generate.py \
|
460 |
+
--model neuralmagic/Meta-Llama-3.1-405B-Instruct-FP8-dynamic \
|
461 |
+
--bs 16 \
|
462 |
+
--temperature 0.2 \
|
463 |
+
--n_samples 50 \
|
464 |
+
--root "." \
|
465 |
+
--dataset humaneval \
|
466 |
+
--tp 8
|
467 |
+
```
|
468 |
+
##### Sanitization
|
469 |
+
```
|
470 |
+
python3 evalplus/sanitize.py \
|
471 |
+
humaneval/neuralmagic--Meta-Llama-3.1-405B-Instruct-FP8-dynamic_vllm_temp_0.2
|
472 |
+
```
|
473 |
+
##### Evaluation
|
474 |
+
```
|
475 |
+
evalplus.evaluate \
|
476 |
+
--dataset humaneval \
|
477 |
+
--samples humaneval/neuralmagic--Meta-Llama-3.1-405B-Instruct-FP8-dynamic_vllm_temp_0.2-sanitized
|
478 |
+
```
|