--- tags: - fp8 - vllm license: llama3.1 license_link: https://huggingface.co/meta-llama/Meta-Llama-3.1-8B/blob/main/LICENSE language: - en --- # Meta-Llama-3.1-405B-Instruct-FP8-dynamic ## Model Overview - **Model Architecture:** Meta-Llama-3.1 - **Input:** Text - **Output:** Text - **Model Optimizations:** - **Weight quantization:** FP8 - **Activation quantization:** FP8 - **Intended Use Cases:** Intended for commercial and research use in multiple languages. Similarly to [Meta-Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct), this models is intended for assistant-like chat. - **Out-of-scope:** Use in any manner that violates applicable laws or regulations (including trade compliance laws). Use in languages other than English. - **Release Date:** 7/24/2024 - **Version:** 1.0 - **License(s):** [llama3.1](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B/blob/main/LICENSE) - **Model Developers:** Neural Magic Quantized version of [Meta-Llama-3.1-405B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-405B-Instruct). It achieves an average recovery of 99.97% on the [OpenLLM](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) benchmark (version 1), compared to the unquantized model. ### Model Optimizations This model was obtained by quantizing the weights and activations of [Meta-Llama-3.1-405B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-405B-Instruct) to FP8 data type, ready for inference with vLLM built from source. This optimization reduces the number of bits per parameter from 16 to 8, reducing the disk size and GPU memory requirements by approximately 50%. In particular, this model can now be loaded and evaluated with a single node of 8xH100 GPUs, as opposed to multiple nodes. Only the weights and activations of the linear operators within transformers blocks are quantized. Symmetric per-channel quantization is applied, in which a linear scaling per output dimension maps the FP8 representations of the quantized weights and activations. Activations are also quantized on a per-token dynamic basis. [LLM Compressor](https://github.com/vllm-project/llm-compressor) is used for quantization with 512 sequences of UltraChat. ## Deployment ### Use with vLLM This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below. ```python from vllm import LLM, SamplingParams from transformers import AutoTokenizer model_id = "neuralmagic/Meta-Llama-3.1-405B-Instruct-FP8-dynamic" number_gpus = 8 sampling_params = SamplingParams(temperature=0.6, top_p=0.9, max_tokens=256) tokenizer = AutoTokenizer.from_pretrained(model_id) messages = [ {"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"}, {"role": "user", "content": "Who are you?"}, ] prompts = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=False) llm = LLM(model=model_id, tensor_parallel_size=number_gpus, max_model_len=4096) outputs = llm.generate(prompts, sampling_params) generated_text = outputs[0].outputs[0].text print(generated_text) ``` vLLM aslo supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details. ## Creation This model was created by applying [LLM Compressor with calibration samples from UltraChat](https://github.com/vllm-project/llm-compressor/blob/sa/big_model_support/examples/big_model_offloading/big_model_w8a8_calibrate.py), as presented in the code snipet below. ```python import torch from transformers import AutoTokenizer from llmcompressor.transformers import SparseAutoModelForCausalLM, oneshot from llmcompressor.transformers.compression.helpers import ( # noqa calculate_offload_device_map, custom_offload_device_map, ) recipe = """ quant_stage: quant_modifiers: QuantizationModifier: ignore: ["lm_head"] config_groups: group_0: weights: num_bits: 8 type: float strategy: channel dynamic: false symmetric: true input_activations: num_bits: 8 type: float strategy: token dynamic: true symmetric: true targets: ["Linear"] """ model_stub = "meta-llama/Meta-Llama-3.1-405B-Instruct" model_name = model_stub.split("/")[-1] device_map = calculate_offload_device_map( model_stub, reserve_for_hessians=False, num_gpus=8, torch_dtype=torch.float16 ) model = SparseAutoModelForCausalLM.from_pretrained( model_stub, torch_dtype=torch.float16, device_map=device_map ) output_dir = f"./{model_name}-FP8-dynamic" oneshot( model=model, recipe=recipe, output_dir=output_dir, save_compressed=True, tokenizer=AutoTokenizer.from_pretrained(model_stub), ) ``` ## Evaluation The model was evaluated on MMLU, ARC-Challenge, GSM-8K, Hellaswag, Winogrande and TruthfulQA. Evaluation was conducted using the Neural Magic fork of [lm-evaluation-harness](https://github.com/neuralmagic/lm-evaluation-harness/tree/llama_3.1_instruct) (branch llama_3.1_instruct) and the [vLLM](https://docs.vllm.ai/en/stable/) engine. This version of the lm-evaluation-harness includes versions of ARC-Challenge and GSM-8K that match the prompting style of [Meta-Llama-3.1-Instruct-evals](https://huggingface.co/datasets/meta-llama/Meta-Llama-3.1-8B-Instruct-evals). ### Accuracy #### Open LLM Leaderboard evaluation scores
Benchmark Meta-Llama-3.1-405B-Instruct Meta-Llama-3.1-405B-Instruct-FP8-dynamic(this model) Recovery
MMLU (5-shot) 86.25 86.17 99.91%
ARC Challenge (0-shot) 96.93 *being collected *
GSM-8K-cot (8-shot, strict-match) 96.44 95.98 99.52%
Hellaswag (10-shot) 88.33 88.34 100.0%
Winogrande (5-shot) 87.21 87.45 100.2%
TruthfulQA (0-shot) 64.64 64.71 100.1%
Average 86.63 * 99.97%
### Reproduction The results were obtained using the following commands: #### MMLU ``` lm_eval \ --model vllm \ --model_args pretrained="neuralmagic/Meta-Llama-3.1-405B-Instruct-FP8-dynamic",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=8 \ --tasks mmlu \ --num_fewshot 5 \ --batch_size auto ``` #### ARC-Challenge ``` lm_eval \ --model vllm \ --model_args pretrained="neuralmagic/Meta-Llama-3.1-405B-Instruct-FP8-dynamic",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=8 \ --tasks arc_challenge_llama_3.1_instruct \ --apply_chat_template \ --num_fewshot 0 \ --batch_size auto ``` #### GSM-8K ``` lm_eval \ --model vllm \ --model_args pretrained="neuralmagic/Meta-Llama-3.1-405B-Instruct-FP8-dynamic",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=8 \ --tasks gsm8k_cot_llama_3.1_instruct \ --apply_chat_template \ --num_fewshot 8 \ --batch_size auto ``` #### Hellaswag ``` lm_eval \ --model vllm \ --model_args pretrained="neuralmagic/Meta-Llama-3.1-405B-Instruct-FP8-dynamic",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=8 \ --tasks hellaswag \ --num_fewshot 10 \ --batch_size auto ``` #### Winogrande ``` lm_eval \ --model vllm \ --model_args pretrained="neuralmagic/Meta-Llama-3.1-405B-Instruct-FP8-dynamic",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=8 \ --tasks winogrande \ --num_fewshot 5 \ --batch_size auto ``` #### TruthfulQA ``` lm_eval \ --model vllm \ --model_args pretrained="neuralmagic/Meta-Llama-3.1-405B-Instruct-FP8-dynamic",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=8 \ --tasks truthfulqa_mc \ --num_fewshot 0 \ --batch_size auto ```