Update README.md
Browse files
README.md
CHANGED
@@ -33,7 +33,7 @@ base_model: meta-llama/Meta-Llama-3.1-405B-Instruct
|
|
33 |
- **Model Developers:** Neural Magic
|
34 |
|
35 |
Quantized version of [Meta-Llama-3.1-405B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-405B-Instruct) with the updated 8 kv-heads.
|
36 |
-
It achieves an average score of 86.
|
37 |
|
38 |
### Model Optimizations
|
39 |
|
@@ -118,11 +118,11 @@ model_stub = "meta-llama/Meta-Llama-3.1-405B-Instruct"
|
|
118 |
model_name = model_stub.split("/")[-1]
|
119 |
|
120 |
device_map = calculate_offload_device_map(
|
121 |
-
model_stub, reserve_for_hessians=False, num_gpus=8, torch_dtype=
|
122 |
)
|
123 |
|
124 |
model = SparseAutoModelForCausalLM.from_pretrained(
|
125 |
-
model_stub, torch_dtype=
|
126 |
)
|
127 |
tokenizer = AutoTokenizer.from_pretrained(model_stub)
|
128 |
|
@@ -193,9 +193,9 @@ This version of the lm-evaluation-harness includes versions of ARC-Challenge, GS
|
|
193 |
</td>
|
194 |
<td>87.41
|
195 |
</td>
|
196 |
-
<td>87.
|
197 |
</td>
|
198 |
-
<td>
|
199 |
</td>
|
200 |
</tr>
|
201 |
<tr>
|
@@ -203,9 +203,9 @@ This version of the lm-evaluation-harness includes versions of ARC-Challenge, GS
|
|
203 |
</td>
|
204 |
<td>88.11
|
205 |
</td>
|
206 |
-
<td>
|
207 |
</td>
|
208 |
-
<td>99.
|
209 |
</td>
|
210 |
</tr>
|
211 |
<tr>
|
@@ -213,9 +213,9 @@ This version of the lm-evaluation-harness includes versions of ARC-Challenge, GS
|
|
213 |
</td>
|
214 |
<td>94.97
|
215 |
</td>
|
216 |
-
<td>94.
|
217 |
</td>
|
218 |
-
<td>
|
219 |
</td>
|
220 |
</tr>
|
221 |
<tr>
|
@@ -223,9 +223,9 @@ This version of the lm-evaluation-harness includes versions of ARC-Challenge, GS
|
|
223 |
</td>
|
224 |
<td>95.98
|
225 |
</td>
|
226 |
-
<td>
|
227 |
</td>
|
228 |
-
<td>
|
229 |
</td>
|
230 |
</tr>
|
231 |
<tr>
|
@@ -233,9 +233,9 @@ This version of the lm-evaluation-harness includes versions of ARC-Challenge, GS
|
|
233 |
</td>
|
234 |
<td>88.54
|
235 |
</td>
|
236 |
-
<td>88.
|
237 |
</td>
|
238 |
-
<td>
|
239 |
</td>
|
240 |
</tr>
|
241 |
<tr>
|
@@ -243,9 +243,9 @@ This version of the lm-evaluation-harness includes versions of ARC-Challenge, GS
|
|
243 |
</td>
|
244 |
<td>87.21
|
245 |
</td>
|
246 |
-
<td>
|
247 |
</td>
|
248 |
-
<td>
|
249 |
</td>
|
250 |
</tr>
|
251 |
<tr>
|
@@ -253,9 +253,9 @@ This version of the lm-evaluation-harness includes versions of ARC-Challenge, GS
|
|
253 |
</td>
|
254 |
<td>65.31
|
255 |
</td>
|
256 |
-
<td>
|
257 |
</td>
|
258 |
-
<td>
|
259 |
</td>
|
260 |
</tr>
|
261 |
<tr>
|
@@ -263,9 +263,9 @@ This version of the lm-evaluation-harness includes versions of ARC-Challenge, GS
|
|
263 |
</td>
|
264 |
<td><strong>86.79</strong>
|
265 |
</td>
|
266 |
-
<td><strong>86.
|
267 |
</td>
|
268 |
-
<td><strong>99.
|
269 |
</td>
|
270 |
</tr>
|
271 |
</table>
|
|
|
33 |
- **Model Developers:** Neural Magic
|
34 |
|
35 |
Quantized version of [Meta-Llama-3.1-405B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-405B-Instruct) with the updated 8 kv-heads.
|
36 |
+
It achieves an average score of 86.78 on the [OpenLLM](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) benchmark (version 1), whereas the unquantized model achieves 86.79.
|
37 |
|
38 |
### Model Optimizations
|
39 |
|
|
|
118 |
model_name = model_stub.split("/")[-1]
|
119 |
|
120 |
device_map = calculate_offload_device_map(
|
121 |
+
model_stub, reserve_for_hessians=False, num_gpus=8, torch_dtype="auto"
|
122 |
)
|
123 |
|
124 |
model = SparseAutoModelForCausalLM.from_pretrained(
|
125 |
+
model_stub, torch_dtype="auto", device_map=device_map
|
126 |
)
|
127 |
tokenizer = AutoTokenizer.from_pretrained(model_stub)
|
128 |
|
|
|
193 |
</td>
|
194 |
<td>87.41
|
195 |
</td>
|
196 |
+
<td>87.41
|
197 |
</td>
|
198 |
+
<td>100.0%
|
199 |
</td>
|
200 |
</tr>
|
201 |
<tr>
|
|
|
203 |
</td>
|
204 |
<td>88.11
|
205 |
</td>
|
206 |
+
<td>88.02
|
207 |
</td>
|
208 |
+
<td>99.90%
|
209 |
</td>
|
210 |
</tr>
|
211 |
<tr>
|
|
|
213 |
</td>
|
214 |
<td>94.97
|
215 |
</td>
|
216 |
+
<td>94.88
|
217 |
</td>
|
218 |
+
<td>99.91%
|
219 |
</td>
|
220 |
</tr>
|
221 |
<tr>
|
|
|
223 |
</td>
|
224 |
<td>95.98
|
225 |
</td>
|
226 |
+
<td>96.29
|
227 |
</td>
|
228 |
+
<td>100.3%
|
229 |
</td>
|
230 |
</tr>
|
231 |
<tr>
|
|
|
233 |
</td>
|
234 |
<td>88.54
|
235 |
</td>
|
236 |
+
<td>88.54
|
237 |
</td>
|
238 |
+
<td>100.0%
|
239 |
</td>
|
240 |
</tr>
|
241 |
<tr>
|
|
|
243 |
</td>
|
244 |
<td>87.21
|
245 |
</td>
|
246 |
+
<td>86.98
|
247 |
</td>
|
248 |
+
<td>99.74%
|
249 |
</td>
|
250 |
</tr>
|
251 |
<tr>
|
|
|
253 |
</td>
|
254 |
<td>65.31
|
255 |
</td>
|
256 |
+
<td>65.33
|
257 |
</td>
|
258 |
+
<td>100.0%
|
259 |
</td>
|
260 |
</tr>
|
261 |
<tr>
|
|
|
263 |
</td>
|
264 |
<td><strong>86.79</strong>
|
265 |
</td>
|
266 |
+
<td><strong>86.78</strong>
|
267 |
</td>
|
268 |
+
<td><strong>99.99%</strong>
|
269 |
</td>
|
270 |
</tr>
|
271 |
</table>
|