--- tags: - fp8 - vllm pipeline_tag: text-generation license: mit license_link: https://huggingface.co/microsoft/Phi-3.5-mini-instruct/resolve/main/LICENSE base_model: microsoft/Phi-3.5-mini-instruct --- # Phi-3.5-mini-instruct-FP8-KV ## Model Overview - **Model Architecture:** Phi-3.5 - **Input:** Text - **Output:** Text - **Model Optimizations:** - **Weight quantization:** FP8 - **Activation quantization:** FP8 - **Intended Use Cases:** Intended for commercial and research use in English. Similarly to [Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct), this models is intended for assistant-like chat. - **Out-of-scope:** Use in any manner that violates applicable laws or regulations (including trade compliance laws). Use in languages other than English. - **Release Date:** 8/11/2024 - **Version:** 1.1 - **License(s):** [mit](https://huggingface.co/microsoft/Phi-3.5-mini-instruct/resolve/main/LICENSE) - **Model Developers:** Neural Magic Quantized version of [Phi-3.5-mini-instruct](https://huggingface.co/microsoft/Phi-3.5-mini-instruct), with the new configuration files. ### Model Optimizations This model was obtained by quantizing the weights and activations of [Phi-3.5-mini-instruct](https://huggingface.co/microsoft/Phi-3.5-mini-instruct) to FP8 data type, ready for inference with vLLM >= 0.5.1. This optimization reduces the number of bits per parameter from 16 to 8, reducing the disk size and GPU memory requirements by approximately 50%. Only the weights and activations of the linear operators within transformers blocks are quantized. Symmetric per-tensor quantization is applied, in which a single linear scaling maps the FP8 representations of the quantized weights and activations. [AutoFP8](https://github.com/neuralmagic/AutoFP8) is used for quantization with 512 sequences of UltraChat. ## Deployment ### Use with vLLM This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below. ```python from vllm import LLM, SamplingParams from transformers import AutoTokenizer model_id = "neuralmagic/Phi-3.5-mini-instruct-FP8-KV" sampling_params = SamplingParams(temperature=0.6, top_p=0.9, max_tokens=256) tokenizer = AutoTokenizer.from_pretrained(model_id) messages = [ {"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"}, {"role": "user", "content": "Who are you? Remember to respond in pirate speak!"}, ] prompts = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) llm = LLM(model=model_id, kv_cache_dtype="fp8") outputs = llm.generate(prompts, sampling_params) generated_text = outputs[0].outputs[0].text print(generated_text) ``` vLLM aslo supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details. ## Creation This model was created by applying [LLM Compressor with calibration samples from UltraChat](https://github.com/vllm-project/llm-compressor/blob/sa/big_model_support/examples/big_model_offloading/big_model_w8a8_calibrate.py), as presented in the code snipet below. ```python from datasets import load_dataset from transformers import AutoTokenizer from llmcompressor.transformers import SparseAutoModelForCausalLM, oneshot # Select model and load it. # Phi-3.5 is a special case for KV cache quantization because it has # fused QKV linear layers. MODEL_ID = "microsoft/Phi-3.5-mini-instruct" model = SparseAutoModelForCausalLM.from_pretrained( MODEL_ID, device_map="auto", torch_dtype="auto", ) tokenizer = AutoTokenizer.from_pretrained(MODEL_ID) # Select calibration dataset. DATASET_ID = "HuggingFaceH4/ultrachat_200k" DATASET_SPLIT = "train_sft" # Select number of samples. 512 samples is a good place to start. # Increasing the number of samples can improve accuracy. NUM_CALIBRATION_SAMPLES = 512 MAX_SEQUENCE_LENGTH = 2048 # Load dataset and preprocess. ds = load_dataset(DATASET_ID, split=DATASET_SPLIT) ds = ds.shuffle(seed=42).select(range(NUM_CALIBRATION_SAMPLES)) def process_and_tokenize(example): text = tokenizer.apply_chat_template(example["messages"], tokenize=False) return tokenizer( text, padding=False, max_length=MAX_SEQUENCE_LENGTH, truncation=True, add_special_tokens=False, ) ds = ds.map(process_and_tokenize, remove_columns=ds.column_names) # Configure the quantization algorithm and scheme. # In this case, we: # * quantize the weights to fp8 with per-tensor scales # * quantize the activations to fp8 with per-tensor scales # * quantize the kv cache to fp8 with per-tensor scales recipe = """ quant_stage: quant_modifiers: QuantizationModifier: ignore: ["lm_head"] config_groups: group_0: weights: num_bits: 8 type: float strategy: tensor dynamic: false symmetric: true input_activations: num_bits: 8 type: float strategy: tensor dynamic: false symmetric: true targets: ["Linear"] kv_cache_scheme: num_bits: 8 type: float strategy: tensor dynamic: false symmetric: true """ # Apply algorithms. oneshot( model=model, dataset=ds, recipe=recipe, max_seq_length=MAX_SEQUENCE_LENGTH, num_calibration_samples=NUM_CALIBRATION_SAMPLES, ) # Confirm generations of the quantized model look sane. print("\n\n") print("========== SAMPLE GENERATION ==============") input_ids = tokenizer("Hello my name is", return_tensors="pt").input_ids.to("cuda") output = model.generate(input_ids, max_new_tokens=100) print(tokenizer.decode(output[0])) print("==========================================\n\n") # Save to disk compressed. SAVE_DIR = MODEL_ID.split("/")[1] + "-FP8-KV" model.save_pretrained(SAVE_DIR, save_compressed=True) tokenizer.save_pretrained(SAVE_DIR) ``` ## Evaluation The model was evaluated on the [OpenLLM](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) leaderboard tasks (version 1) with the [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness/tree/383bbd54bc621086e05aa1b030d8d4d5635b25e6) (commit 383bbd54bc621086e05aa1b030d8d4d5635b25e6) and the [vLLM](https://docs.vllm.ai/en/stable/) engine, using the following command: ``` lm_eval \ --model vllm \ --model_args pretrained="neuralmagic/Phi-3.5-mini-instruct-FP8-KV",kv_cache_dtype="fp8",gpu_memory_utilization=0.4,add_bos_token=True,max_model_len=4096 \ --tasks openllm \ --batch_size auto ``` ### Accuracy #### Open LLM Leaderboard evaluation scores
Benchmark | Phi-3.5-mini-instruct | Phi-3.5-mini-instruct-FP8-KV(this model) | Recovery |
MMLU (5-shot) | 68.81 | 68.56 | 99.64% |
ARC Challenge (25-shot, acc_norm) | 64.68 | 64.51 | 99.74% |
GSM-8K (5-shot, strict-match) | 78.24 | 77.26 | 98.75% |
Hellaswag (10-shot, acc_norm) | 79.03 | 78.88 | 99.81% |
Winogrande (5-shot, acc) | 73.40 | 73.80 | 100.5% |
TruthfulQA (0-shot, mc2) | 56.39 | 56.95 | 100.9% |
Average | 70.09 | 70.00 | 99.89% |