alexmarques commited on
Commit
4006245
·
verified ·
1 Parent(s): df0ccad

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +207 -153
README.md CHANGED
@@ -1,199 +1,253 @@
1
  ---
2
- library_name: transformers
3
- tags: []
 
4
  ---
5
 
6
- # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
 
 
 
 
 
 
 
 
 
 
9
 
 
 
10
 
 
11
 
12
- ## Model Details
 
13
 
14
- ### Model Description
 
15
 
16
- <!-- Provide a longer summary of what this model is. -->
17
 
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
29
 
30
- <!-- Provide the basic links for the model. -->
 
 
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
 
36
- ## Uses
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
 
40
- ### Direct Use
 
 
 
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
 
44
- [More Information Needed]
45
 
46
- ### Downstream Use [optional]
47
 
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
 
 
49
 
50
- [More Information Needed]
51
 
52
- ### Out-of-Scope Use
53
 
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
 
55
 
56
- [More Information Needed]
 
57
 
58
- ## Bias, Risks, and Limitations
59
 
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
 
 
 
 
 
61
 
62
- [More Information Needed]
 
 
 
63
 
64
- ### Recommendations
 
 
 
 
65
 
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
 
 
 
67
 
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
 
 
 
 
 
 
 
 
 
 
69
 
70
- ## How to Get Started with the Model
71
 
72
- Use the code below to get started with the model.
 
73
 
74
- [More Information Needed]
 
 
 
75
 
76
- ## Training Details
77
 
78
- ### Training Data
 
79
 
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
 
82
- [More Information Needed]
 
 
 
 
 
 
 
 
83
 
84
- ### Training Procedure
 
 
 
 
 
 
85
 
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
 
 
 
 
87
 
88
- #### Preprocessing [optional]
 
 
89
 
90
- [More Information Needed]
91
 
92
 
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
  ## Evaluation
104
 
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
  ---
2
+ language:
3
+ - en
4
+ pipeline_tag: text-generation
5
  ---
6
 
7
+ # Qwen2-0.5B-Instruct-quantized.w8a16
8
 
9
+ ## Model Overview
10
+ - **Model Architecture:** Qwen2
11
+ - **Input:** Text
12
+ - **Output:** Text
13
+ - **Model Optimizations:**
14
+ - **Weight quantization:** INT8
15
+ - **Intended Use Cases:** Intended for commercial and research use in English. Similarly to [Qwen2-0.5B-Instruct](https://huggingface.co/Qwen/Qwen2-0.5B-Instruct), this models is intended for assistant-like chat.
16
+ - **Out-of-scope:** Use in any manner that violates applicable laws or regulations (including trade compliance laws). Use in languages other than English.
17
+ - **Release Date:** 7/2/2024
18
+ - **Version:** 1.0
19
+ - **Model Developers:** Neural Magic
20
 
21
+ Quantized version of [Qwen2-0.5B-Instruct](https://huggingface.co/Qwen/Qwen2-0.5B-Instruct).
22
+ It achieves an average score of 43.06 on the [OpenLLM](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) benchmark (version 1), whereas the unquantized model achieves 42.99.
23
 
24
+ ### Model Optimizations
25
 
26
+ This model was obtained by quantizing the weights of [Qwen2-0.5B-Instruct](https://huggingface.co/Qwen/Qwen2-0.5B-Instruct) to INT8 data type.
27
+ This optimization reduces the number of bits per parameter from 16 to 8, reducing the disk size and GPU memory requirements by approximately 50%.
28
 
29
+ Only the weights of the linear operators within transformers blocks are quantized. Symmetric per-channel quantization is applied, in which a linear scaling per output dimension maps the INT8 and floating point representations of the quantized weights.
30
+ [AutoGPTQ](https://github.com/AutoGPTQ/AutoGPTQ) is used for quantization with 1% damping factor and 256 sequences of 8,192 random tokens.
31
 
 
32
 
33
+ ## Deployment
34
 
35
+ ### Use with vLLM
 
 
 
 
 
 
36
 
37
+ This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below.
38
 
39
+ ```python
40
+ from vllm import LLM, SamplingParams
41
+ from transformers import AutoTokenizer
42
 
43
+ model_id = "neuralmagic/Qwen2-0.5B-Instruct-quantized.w8a16"
 
 
44
 
45
+ sampling_params = SamplingParams(temperature=0.7, top_p=0.8, max_tokens=256)
46
 
47
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
48
 
49
+ messages = [
50
+ {"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
51
+ {"role": "user", "content": "Who are you?"},
52
+ ]
53
 
54
+ prompts = tokenizer.apply_chat_template(messages, tokenize=False)
55
 
56
+ llm = LLM(model=model_id)
57
 
58
+ outputs = llm.generate(prompts, sampling_params)
59
 
60
+ generated_text = outputs[0].outputs[0].text
61
+ print(generated_text)
62
+ ```
63
 
64
+ vLLM aslo supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details.
65
 
66
+ ### Use with transformers
67
 
68
+ This model is supported by Transformers leveraging the integration with the [AutoGPTQ](https://github.com/AutoGPTQ/AutoGPTQ) data format.
69
+ The following example contemplates how the model can be used using the `generate()` function.
70
 
71
+ ```python
72
+ from transformers import AutoTokenizer, AutoModelForCausalLM
73
 
74
+ model_id = "neuralmagic/Qwen2-0.5B-Instruct-quantized.w8a16"
75
 
76
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
77
+ model = AutoModelForCausalLM.from_pretrained(
78
+ model_id,
79
+ torch_dtype="auto",
80
+ device_map="auto",
81
+ )
82
 
83
+ messages = [
84
+ {"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
85
+ {"role": "user", "content": "Who are you?"},
86
+ ]
87
 
88
+ input_ids = tokenizer.apply_chat_template(
89
+ messages,
90
+ add_generation_prompt=True,
91
+ return_tensors="pt"
92
+ ).to(model.device)
93
 
94
+ terminators = [
95
+ tokenizer.eos_token_id,
96
+ tokenizer.convert_tokens_to_ids("<|eot_id|>")
97
+ ]
98
 
99
+ outputs = model.generate(
100
+ input_ids,
101
+ max_new_tokens=256,
102
+ eos_token_id=terminators,
103
+ do_sample=True,
104
+ temperature=0.7,
105
+ top_p=0.8,
106
+ )
107
+ response = outputs[0][input_ids.shape[-1]:]
108
+ print(tokenizer.decode(response, skip_special_tokens=True))
109
+ ```
110
 
111
+ ## Creation
112
 
113
+ This model was created by applying the [AutoGPTQ](https://github.com/AutoGPTQ/AutoGPTQ) library as presented in the code snipet below.
114
+ Although AutoGPTQ was used for this particular model, Neural Magic is transitioning to using [llm-compressor](https://github.com/vllm-project/llm-compressor) which supports several quantization schemes and models not supported by AutoGPTQ.
115
 
116
+ ```python
117
+ from transformers import AutoTokenizer
118
+ from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig
119
+ import random
120
 
121
+ model_id = "Qwen/Qwen2-0.5B-Instruct"
122
 
123
+ num_samples = 256
124
+ max_seq_len = 8192
125
 
126
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
127
 
128
+ max_token_id = len(tokenizer.get_vocab()) - 1
129
+ examples = []
130
+ for _ in range(num_samples):
131
+ examples.append(
132
+ {
133
+ "input_ids": [random.randint(0, max_token_id) for _ in range(max_seq_len)],
134
+ "attention_mask": max_seq_len*[1],
135
+ }
136
+ )
137
 
138
+ quantize_config = BaseQuantizeConfig(
139
+ bits=8,
140
+ group_size=-1,
141
+ desc_act=False,
142
+ model_file_base_name="model",
143
+ damp_percent=0.01,
144
+ )
145
 
146
+ model = AutoGPTQForCausalLM.from_pretrained(
147
+ model_id,
148
+ quantize_config,
149
+ device_map="auto",
150
+ )
151
 
152
+ model.quantize(examples)
153
+ model.save_pretrained("Meta-Llama-3-8B-Instruct-quantized.w8a16")
154
+ ```
155
 
 
156
 
157
 
 
 
 
 
 
 
 
 
 
 
158
  ## Evaluation
159
 
160
+ The model was evaluated on the [OpenLLM](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) leaderboard tasks (version 1) with the [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness/tree/383bbd54bc621086e05aa1b030d8d4d5635b25e6) (commit 383bbd54bc621086e05aa1b030d8d4d5635b25e6) and the [vLLM](https://docs.vllm.ai/en/stable/) engine, using the following command:
161
+ ```
162
+ lm_eval \
163
+ --model vllm \
164
+ --model_args pretrained="neuralmagic/Qwen2-0.5B-Instruct-quantized.w8a16",dtype=auto,gpu_memory_utilization=0.4,add_bos_token=True,max_model_len=4096 \
165
+ --tasks openllm \
166
+ --batch_size auto
167
+ ```
168
+
169
+ ### Accuracy
170
+
171
+ #### Open LLM Leaderboard evaluation scores
172
+ <table>
173
+ <tr>
174
+ <td><strong>Benchmark</strong>
175
+ </td>
176
+ <td><strong>Qwen2-0.5B-Instruct</strong>
177
+ </td>
178
+ <td><strong>Qwen2-0.5B-Instruct-quantized.w8a16(this model)</strong>
179
+ </td>
180
+ <td><strong>Recovery</strong>
181
+ </td>
182
+ </tr>
183
+ <tr>
184
+ <td>MMLU (5-shot)
185
+ </td>
186
+ <td>43.72
187
+ </td>
188
+ <td>43.85
189
+ </td>
190
+ <td>100.3%
191
+ </td>
192
+ </tr>
193
+ <tr>
194
+ <td>ARC Challenge (25-shot)
195
+ </td>
196
+ <td>31.83
197
+ </td>
198
+ <td>31.74
199
+ </td>
200
+ <td>99.7%
201
+ </td>
202
+ </tr>
203
+ <tr>
204
+ <td>GSM-8K (5-shot, strict-match)
205
+ </td>
206
+ <td>37.68
207
+ </td>
208
+ <td>38.06
209
+ </td>
210
+ <td>101.0%
211
+ </td>
212
+ </tr>
213
+ <tr>
214
+ <td>Hellaswag (10-shot)
215
+ </td>
216
+ <td>49.50
217
+ </td>
218
+ <td>49.42
219
+ </td>
220
+ <td>99.8%
221
+ </td>
222
+ </tr>
223
+ <tr>
224
+ <td>Winogrande (5-shot)
225
+ </td>
226
+ <td>56.27
227
+ </td>
228
+ <td>55.64
229
+ </td>
230
+ <td>99.7%
231
+ </td>
232
+ </tr>
233
+ <tr>
234
+ <td>TruthfulQA (0-shot)
235
+ </td>
236
+ <td>39.38
237
+ </td>
238
+ <td>39.24
239
+ </td>
240
+ <td>99.7%
241
+ </td>
242
+ </tr>
243
+ <tr>
244
+ <td><strong>Average</strong>
245
+ </td>
246
+ <td><strong>43.06</strong>
247
+ </td>
248
+ <td><strong>42.99</strong>
249
+ </td>
250
+ <td><strong>99.8%</strong>
251
+ </td>
252
+ </tr>
253
+ </table>