alexmarques commited on
Commit
9cc28d1
·
verified ·
1 Parent(s): 37e4303

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +168 -0
README.md ADDED
@@ -0,0 +1,168 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ license_link: https://huggingface.co/Qwen/Qwen2.5-72B/blob/main/LICENSE
4
+ language:
5
+ - en
6
+ pipeline_tag: text-generation
7
+ base_model: Qwen/Qwen2.5-72B
8
+ tags:
9
+ - chat
10
+ - neuralmagic
11
+ - llmcompressor
12
+ ---
13
+
14
+ # Qwen2.5-72B-quantized.w8a8
15
+
16
+ ## Model Overview
17
+ - **Model Architecture:** Qwen2
18
+ - **Input:** Text
19
+ - **Output:** Text
20
+ - **Model Optimizations:**
21
+ - **Activation quantization:** INT8
22
+ - **Weight quantization:** INT8
23
+ - **Intended Use Cases:** Intended for commercial and research use multiple languages. Similarly to [Qwen2.5-72B](https://huggingface.co/Qwen/Qwen2.5-72B), this models is intended for assistant-like chat.
24
+ - **Out-of-scope:** Use in any manner that violates applicable laws or regulations (including trade compliance laws).
25
+ - **Release Date:** 11/27/2024
26
+ - **Version:** 1.0
27
+ - **License(s):** [apache-2.0](https://huggingface.co/Qwen/Qwen2.5-72B/blob/main/LICENSE)
28
+ - **Model Developers:** Neural Magic
29
+
30
+ Quantized version of [Qwen2.5-72B](https://huggingface.co/Qwen/Qwen2.5-72B).
31
+ It achieves an average score of 78.79 on the [OpenLLM](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) benchmark (version 1), whereas the unquantized model achieves 78.91.
32
+
33
+ ### Model Optimizations
34
+
35
+ This model was obtained by quantizing the weights of [Qwen2.5-72B](https://huggingface.co/Qwen/Qwen2.5-72B) to INT8 data type.
36
+ This optimization reduces the number of bits used to represent weights and activations from 16 to 8, reducing GPU memory requirements (by approximately 50%) and increasing matrix-multiply compute throughput (by approximately 2x).
37
+ Weight quantization also reduces disk size requirements by approximately 50%.
38
+
39
+ Only weights and activations of the linear operators within transformers blocks are quantized.
40
+ Weights are quantized with a symmetric static per-channel scheme, where a fixed linear scaling factor is applied between INT8 and floating point representations for each output channel dimension.
41
+ Activations are quantized with a symmetric dynamic per-token scheme, computing a linear scaling factor at runtime for each token between INT8 and floating point representations.
42
+
43
+ ## Deployment
44
+
45
+ This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below.
46
+
47
+ ```python
48
+ from vllm import LLM, SamplingParams
49
+ from transformers import AutoTokenizer
50
+
51
+ model_id = "neuralmagic/Qwen2.5-72B-quantized.w8a8"
52
+ number_gpus = 2
53
+ max_model_len = 8192
54
+
55
+ sampling_params = SamplingParams(temperature=0.7, top_p=0.8, max_tokens=256)
56
+
57
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
58
+
59
+ prompt = "Give me a short introduction to large language model."
60
+
61
+ llm = LLM(model=model_id, tensor_parallel_size=number_gpus, max_model_len=max_model_len)
62
+
63
+ outputs = llm.generate(prompt, sampling_params)
64
+
65
+ generated_text = outputs[0].outputs[0].text
66
+ print(generated_text)
67
+ ```
68
+
69
+ vLLM aslo supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details.
70
+
71
+
72
+ ## Evaluation
73
+
74
+ The model was evaluated on the [OpenLLM](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) leaderboard tasks (version 1) with the [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness/tree/3872Bbd54bc621086e05aa1b030d8d4d5635b25e6) (commit 3872Bbd54bc621086e05aa1b030d8d4d5635b25e6) and the [vLLM](https://docs.vllm.ai/en/stable/) engine, using the following command:
75
+ ```
76
+ lm_eval \
77
+ --model vllm \
78
+ --model_args pretrained="neuralmagic/Qwen2.5-72B-quantized.w8a8",dtype=auto,gpu_memory_utilization=0.9,add_bos_token=True,max_model_len=4096,enable_chunk_prefill=True,tensor_parallel_size=2 \
79
+ --tasks openllm \
80
+ --batch_size auto
81
+ ```
82
+
83
+ ### Accuracy
84
+
85
+ #### Open LLM Leaderboard evaluation scores
86
+ <table>
87
+ <tr>
88
+ <td><strong>Benchmark</strong>
89
+ </td>
90
+ <td><strong>Qwen2.5-72B</strong>
91
+ </td>
92
+ <td><strong>Qwen2.5-72B-quantized.w8a8 (this model)</strong>
93
+ </td>
94
+ <td><strong>Recovery</strong>
95
+ </td>
96
+ </tr>
97
+ <tr>
98
+ <td>MMLU (5-shot)
99
+ </td>
100
+ <td>86.05
101
+ </td>
102
+ <td>85.84
103
+ </td>
104
+ <td>99.8%
105
+ </td>
106
+ </tr>
107
+ <tr>
108
+ <td>ARC Challenge (25-shot)
109
+ </td>
110
+ <td>68.26
111
+ </td>
112
+ <td>68.17
113
+ </td>
114
+ <td>99.9%
115
+ </td>
116
+ </tr>
117
+ <tr>
118
+ <td>GSM-8K (5-shot, strict-match)
119
+ </td>
120
+ <td>88.63
121
+ </td>
122
+ <td>87.79
123
+ </td>
124
+ <td>99.1%
125
+ </td>
126
+ </tr>
127
+ <tr>
128
+ <td>Hellaswag (10-shot)
129
+ </td>
130
+ <td>87.53
131
+ </td>
132
+ <td>87.46
133
+ </td>
134
+ <td>99.9%
135
+ </td>
136
+ </tr>
137
+ <tr>
138
+ <td>Winogrande (5-shot)
139
+ </td>
140
+ <td>82.56
141
+ </td>
142
+ <td>83.19
143
+ </td>
144
+ <td>100.8%
145
+ </td>
146
+ </tr>
147
+ <tr>
148
+ <td>TruthfulQA (0-shot, mc2)
149
+ </td>
150
+ <td>60.44
151
+ </td>
152
+ <td>60.28
153
+ </td>
154
+ <td>99.7%
155
+ </td>
156
+ </tr>
157
+ <tr>
158
+ <td><strong>Average</strong>
159
+ </td>
160
+ <td><strong>78.91</strong>
161
+ </td>
162
+ <td><strong>78.79</strong>
163
+ </td>
164
+ <td><strong>99.8%</strong>
165
+ </td>
166
+ </tr>
167
+ </table>
168
+