mgoin commited on
Commit
3d4f8aa
1 Parent(s): a9dd7cc

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +34 -0
README.md ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ datasets:
3
+ - gsm8k
4
+ tags:
5
+ - deepsparse
6
+ ---
7
+ # mpt-7b-gsm8k-pruned40-quant
8
+
9
+ This model was produced from a MPT-7B base model finetuned on the GSM8k dataset with pruning and quantization applied using [SparseGPT](https://arxiv.org/abs/2301.00774). Then it was exported for optimized inference with [DeepSparse](https://github.com/neuralmagic/deepsparse/tree/main/research/mpt).
10
+
11
+ GSM8k zero-shot accuracy with [lm-evaluation-harness](https://github.com/neuralmagic/lm-evaluation-harness) : 30.33%
12
+
13
+ ### Usage
14
+
15
+ ```python
16
+ from deepsparse import TextGeneration
17
+ model = TextGeneration(model="hf:neuralmagic/mpt-7b-gsm8k-pruned40-quant")
18
+ model("There are twice as many boys as girls at Dr. Wertz's school. If there are 60 girls and 5 students to every teacher, how many teachers are there?", max_new_tokens=50)
19
+ ```
20
+
21
+ All MPT model weights are available on [SparseZoo](https://sparsezoo.neuralmagic.com/?datasets=gsm8k&ungrouped=true) and CPU speedup for generative inference can be reproduced by following the instructions at [DeepSparse](https://github.com/neuralmagic/deepsparse/tree/main/research/mpt)
22
+
23
+
24
+ | Model Links | Compression |
25
+ | --------------------------------------------------------------------------------------------------------- | --------------------------------- |
26
+ | [neuralmagic/mpt-7b-gsm8k-quant](https://huggingface.co/neuralmagic/mpt-7b-gsm8k-quant) | Quantization (W8A8) |
27
+ | [neuralmagic/mpt-7b-gsm8k-pruned40-quant](https://huggingface.co/neuralmagic/mpt-7b-gsm8k-pruned40-quant) | Quantization (W8A8) & 40% Pruning |
28
+ | [neuralmagic/mpt-7b-gsm8k-pruned50-quant](https://huggingface.co/neuralmagic/mpt-7b-gsm8k-pruned50-quant) | Quantization (W8A8) & 50% Pruning |
29
+ | [neuralmagic/mpt-7b-gsm8k-pruned60-quant](https://huggingface.co/neuralmagic/mpt-7b-gsm8k-pruned60-quant) | Quantization (W8A8) & 60% Pruning |
30
+ | [neuralmagic/mpt-7b-gsm8k-pruned70-quant](https://huggingface.co/neuralmagic/mpt-7b-gsm8k-pruned70-quant) | Quantization (W8A8) & 70% Pruning |
31
+ | [neuralmagic/mpt-7b-gsm8k-pruned80-quant](https://huggingface.co/neuralmagic/mpt-7b-gsm8k-pruned80-quant) | Quantization (W8A8) & 80% Pruning |
32
+
33
+
34
+ For general questions on these models and sparsification methods, reach out to the engineering team on our [community Slack](https://join.slack.com/t/discuss-neuralmagic/shared_invite/zt-q1a1cnvo-YBoICSIw3L1dmQpjBeDurQ).