adirik commited on
Commit
46c4744
·
verified ·
1 Parent(s): 66772bf

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +8 -8
README.md CHANGED
@@ -8,33 +8,33 @@ base_model:
8
  pipeline_tag: text-generation
9
  ---
10
 
11
- # Gemma-2-9b-tr
12
 
13
- Gemma-2-9b-tr is a finetuned version of [google/gemma-2-9b-it](https://huggingface.co/google/gemma-2-9b-it) on a carefully curated and manually filtered dataset of 55k question answering and conversational samples in Turkish.
14
 
15
 
16
  ## Training Details
17
- **Base model:** [google/gemma-2-9b-it](https://huggingface.co/google/gemma-2-9b-it)
18
- **Training data:** A filtered version of [metedb/turkish_llm_datasets](https://huggingface.co/datasets/metedb/turkish_llm_datasets/) and a small private dataset of 8k conversational samples on various topics.
19
- **Training setup:** We performed supervised fine tuning with LoRA with `rank=128` and `lora_alpha`=64. Training took 4 days on a single RTX 6000 Ada.
20
 
21
  Compared to the base model, we find Gemma-2-9b-tr has superior conversational and reasoning skills.
22
 
23
  ## Usage
24
- You can load and use `Gemma-2-9b-tr`as follows.
25
 
26
  ```py
27
  import torch
28
  from transformers import AutoModelForCausalLM, AutoTokenizer
29
 
30
  model = AutoModelForCausalLM.from_pretrained(
31
- "neuralwork/gemma-2-9b-tr",
32
  torch_dtype=torch.bfloat16,
33
  device_map="auto",
34
  trust_remote_code=True
35
  )
36
 
37
- tokenizer = AutoTokenizer.from_pretrained("neuralwork/gemma-2-9b-tr")
38
 
39
  messages = [
40
  {"role": "user", "content": "Python'da bir öğenin bir listede geçip geçmediğini nasıl kontrol edebilirim?"},
 
8
  pipeline_tag: text-generation
9
  ---
10
 
11
+ # Gemma-2-9b-it-tr
12
 
13
+ Gemma-2-9b-it-tr is a finetuned version of [google/gemma-2-9b-it](https://huggingface.co/google/gemma-2-9b-it) on a carefully curated and manually filtered dataset of 55k question answering and conversational samples in Turkish.
14
 
15
 
16
  ## Training Details
17
+ **Base model:** [google/gemma-2-9b-it](https://huggingface.co/google/gemma-2-9b-it)
18
+ **Training data:** A filtered version of [metedb/turkish_llm_datasets](https://huggingface.co/datasets/metedb/turkish_llm_datasets/) and a small private dataset of 8k conversational samples on various topics.
19
+ **Training setup:** We performed supervised fine tuning with LoRA with `rank=128` and `lora_alpha`=64. Training took 4 days on a single RTX 6000 Ada.
20
 
21
  Compared to the base model, we find Gemma-2-9b-tr has superior conversational and reasoning skills.
22
 
23
  ## Usage
24
+ You can load and use `neuralwork/gemma-2-9b-it-tr`as follows.
25
 
26
  ```py
27
  import torch
28
  from transformers import AutoModelForCausalLM, AutoTokenizer
29
 
30
  model = AutoModelForCausalLM.from_pretrained(
31
+ "neuralwork/gemma-2-9b-it-tr",
32
  torch_dtype=torch.bfloat16,
33
  device_map="auto",
34
  trust_remote_code=True
35
  )
36
 
37
+ tokenizer = AutoTokenizer.from_pretrained("neuralwork/gemma-2-9b-it-tr")
38
 
39
  messages = [
40
  {"role": "user", "content": "Python'da bir öğenin bir listede geçip geçmediğini nasıl kontrol edebilirim?"},