File size: 10,012 Bytes
76cdfb8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
import os

import numpy as np
import pandas as pd
from scipy.io import arff
from sklearn import preprocessing
from sklearn.model_selection import train_test_split

from nt_gan import GAN
from nt_gg import GG

dataset_directory = 'datasets'
saved_models_path = 'outputs'


def prepare_architecture(arff_data_path):
    """
    This function create the architecture of the GAN network.
    The generator and the discriminator are created and then combined into the GAN model
    :param arff_data_path: data path for the arff file
    :return: a dictionary with all the relevant variables for the next stages
    """
    data, meta_data = arff.loadarff(arff_data_path)  # This function reads arff file into tuple of data and its meta.
    df = pd.DataFrame(data)
    columns = df.columns
    transformed_data, x, x_scaled, meta_data_rev, min_max_scaler = create_scaled_data(df, meta_data)

    number_of_features = len(transformed_data.columns)  # Define the GAN and training parameters

    return x_scaled, meta_data_rev, columns, min_max_scaler, number_of_features


def create_scaled_data(df, meta_data):
    """

    :param df:
    :param meta_data:
    :return:
    """
    meta_data_dict = {k: {a.replace(' ', ''): b + 1 for b, a in enumerate(v.values)} for k, v in
                      meta_data._attributes.items() if
                      v.type_name != 'numeric'}  # Starts from one and not zero because one is for Nan values
    meta_data_rev = {k: {b + 1: a.replace(' ', '') for b, a in enumerate(v.values)} for k, v in
                     meta_data._attributes.items() if
                     v.type_name != 'numeric'}  # Starts from one and not zero because one is for Nan values
    transformed_data = df.copy()
    for col in df.columns:
        if col in meta_data_dict:
            # Sometimes the values can not be found in the meta data, so we treat these values as Nan
            transformed_data[col] = transformed_data[col].apply(
                lambda x: meta_data_dict[col][str(x).split('\'')[1]] if str(x).split('\'')[1] in meta_data_dict[
                    col] else 0)
    x = transformed_data.values  # returns a numpy array
    min_max_scaler = preprocessing.MinMaxScaler()
    x_scaled = min_max_scaler.fit_transform(x)
    return transformed_data, x, x_scaled, meta_data_rev, min_max_scaler


def re_scaled_data(data, columns, meta_data_rev, min_max_scaler):
    """
    This function re-scaled the fake data to the original format.
    :param data: the data we want to re scaled
    :param columns:
    :param meta_data_rev:
    :return:
    """
    data_inv = min_max_scaler.inverse_transform(data)
    df = pd.DataFrame(data_inv, columns=columns)
    transformed_data = df.copy()
    for col in transformed_data.columns:
        if col in meta_data_rev:
            # Sometimes the values can not be found in the meta data, so we treat these values as Nan
            transformed_data[col] = transformed_data[col].apply(
                lambda x: meta_data_rev[col][int(round(x))] if int(round(x)) in meta_data_rev[
                    col] else np.nan)
    return transformed_data


def first_question():
    """
    This function answers the first question
    :return:
    """
    to_plot_losses = True
    results_output = os.path.join(saved_models_path, f'question_one_results.csv')
    results = {'dataset': [], 'lr': [], 'ep': [], 'bs': [], 'alpha': [], 'dropout': [], 'gen_loss': [], 'dis_loss': [],
               'activation': [], 'fooled_len': [], 'not_fooled_len': [], 'mean_min_distance_fooled': [],
               'mean_min_distance_not_fooled': [], 'mean_min_distance_gap': []}
    # w1 * (MMDF + MMDNF) - w3 * (MMDG) + w2 * (NFL/ 100)
    # MMDG = MMDNF - MMDF
    # data_name = ["adult", "bank-full"]
    # learning_rate = [0.01, 0.001, 0.0001]
    # epochs = [5, 10, 15]
    # batch_size = [64, 128, 1024]
    # alpha_relu = [0.2, 0.5]
    # dropout = [0.3, 0.5]
    data_name = ["adult"]
    learning_rate = [0.001]
    epochs = [10]
    batch_size = [128]
    alpha_relu = [0.5]
    dropout = [0.5]
    loss = 'binary_crossentropy'
    activation = 'sigmoid'

    for data in data_name:
        for lr in learning_rate:
            for ep in epochs:
                for bs in batch_size:
                    for al in alpha_relu:
                        for dr in dropout:
                            arff_data_path = f'./datasets/{data}.arff'
                            model_name = f'data_{data}_ep_{ep}_bs_{bs}_lr_{lr}_al_{al}_dr_{dr}'
                            pca_output = os.path.join(saved_models_path, f'{model_name}_pca.png')
                            fooled_output = os.path.join(saved_models_path, f'{model_name}_fooled.csv')
                            not_fooled_output = os.path.join(saved_models_path, f'{model_name}_not_fooled.csv')

                            x_scaled, meta_data_rev, columns, min_max_scaler, number_of_features = prepare_architecture(
                                arff_data_path)
                            gan_obj = GAN(number_of_features=number_of_features, saved_models_path=saved_models_path,
                                          learning_rate=lr, alpha_relu=al, dropout=dr,
                                          loss=loss, activation=activation)
                            gen_loss, dis_loss = gan_obj.train(scaled_data=x_scaled, epochs=ep, batch_size=bs,
                                                               to_plot_losses=to_plot_losses, model_name=model_name)
                            dis_fooled_scaled, dis_not_fooled_scaled, mean_min_distance_fooled, mean_min_distance_not_fooled = gan_obj.test(
                                scaled_data=x_scaled, sample_num=100, pca_output=pca_output)
                            dis_fooled = re_scaled_data(data=dis_fooled_scaled, columns=columns,
                                                        meta_data_rev=meta_data_rev,
                                                        min_max_scaler=min_max_scaler)
                            dis_fooled.to_csv(fooled_output)
                            dis_not_fooled = re_scaled_data(data=dis_not_fooled_scaled, columns=columns,
                                                            meta_data_rev=meta_data_rev,
                                                            min_max_scaler=min_max_scaler)
                            dis_not_fooled.to_csv(not_fooled_output)
                            results['dataset'].append(data)
                            results['lr'].append(lr)
                            results['ep'].append(ep)
                            results['bs'].append(bs)
                            results['alpha'].append(al)
                            results['dropout'].append(dr)
                            results['gen_loss'].append(gen_loss)
                            results['dis_loss'].append(dis_loss)
                            results['activation'].append(activation)
                            results['fooled_len'].append(len(dis_fooled_scaled))
                            results['not_fooled_len'].append(len(dis_not_fooled_scaled))
                            results['mean_min_distance_fooled'].append(mean_min_distance_fooled)
                            results['mean_min_distance_not_fooled'].append(mean_min_distance_not_fooled)
                            results['mean_min_distance_gap'].append(mean_min_distance_not_fooled-mean_min_distance_fooled)
    results_df = pd.DataFrame.from_dict(results)
    results_df.to_csv(results_output, index=False)


def second_question():

    data_name = ["adult", "bank-full"]
    learning_rate = [0.001]
    epochs = [10]
    batch_size = [128]
    alpha_relu = [0.2]
    dropout = [0.3]
    results = {'dataset': [], 'lr': [], 'ep': [], 'bs': [], 'alpha': [], 'dropout': [], 'gen_loss': [], 'proba_error': []}
    combs = len(data_name) * len(learning_rate) * len(epochs) * len(batch_size) * len(alpha_relu) * len(dropout)
    i = 1
    for data in data_name:
        for lr in learning_rate:
            for ep in epochs:
                for bs in batch_size:
                    for al in alpha_relu:
                        for dr in dropout:
                            print(f'Running combination {i}/{combs}')
                            data_path = f'./datasets/{data}.arff'
                            model_name = f'data_{data}_ep_{ep}_bs_{bs}_lr_{lr}_part2'
                            x_scaled, meta_data_rev, cols, min_max_scaler, feature_num = prepare_architecture(data_path)
                            general_generator = GG(feature_num, saved_models_path, lr, dr, al)
                            x_train, x_test, y_train, y_test = train_test_split(x_scaled[:, :-1], x_scaled[:, -1], test_size=0.1)
                            general_generator.train_gg(x_train, y_train, ep, bs, model_name, data, saved_models_path, True)
                            error = general_generator.get_error()
                            results['dataset'].append(data)
                            results['lr'].append(lr)
                            results['ep'].append(ep)
                            results['bs'].append(bs)
                            results['alpha'].append(al)
                            results['dropout'].append(dr)
                            results['gen_loss'].append(general_generator.losses['gen_loss'][-1])
                            results['proba_error'].append(error.mean())
                            i += 1
                            # Test set performance
                            general_generator.plot_discriminator_results(x_test, y_test, data, saved_models_path)
                            general_generator.plot_generator_results(data, saved_models_path)

    results_output = os.path.join(saved_models_path, f'question_two_results.csv')
    results_df = pd.DataFrame.from_dict(results)
    # results_df.to_csv(results_output, index=False)



def main():
    # first_question()
    second_question()


if __name__ == '__main__':
    main()