newwater commited on
Commit
3e8e4d8
1 Parent(s): 8e12f4a

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v2
16
+ type: PandaReachDense-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -1.90 +/- 0.67
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v2**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:05ebfc831faab380ab714939aac481639c985f6f56d94183585f5338bf91d75c
3
+ size 108002
a2c-PandaReachDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-PandaReachDense-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f1e98829820>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc_data object at 0x7f1e9881efc0>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "observation_space": {
23
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
24
+ ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
25
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
26
+ "_shape": null,
27
+ "dtype": null,
28
+ "_np_random": null
29
+ },
30
+ "action_space": {
31
+ ":type:": "<class 'gym.spaces.box.Box'>",
32
+ ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
33
+ "dtype": "float32",
34
+ "_shape": [
35
+ 3
36
+ ],
37
+ "low": "[-1. -1. -1.]",
38
+ "high": "[1. 1. 1.]",
39
+ "bounded_below": "[ True True True]",
40
+ "bounded_above": "[ True True True]",
41
+ "_np_random": null
42
+ },
43
+ "n_envs": 4,
44
+ "num_timesteps": 1000000,
45
+ "_total_timesteps": 1000000,
46
+ "_num_timesteps_at_start": 0,
47
+ "seed": null,
48
+ "action_noise": null,
49
+ "start_time": 1674565192194971092,
50
+ "learning_rate": 0.0007,
51
+ "tensorboard_log": null,
52
+ "lr_schedule": {
53
+ ":type:": "<class 'function'>",
54
+ ":serialized:": "gAWVqwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMeS9ob21lL2FjbC9EZXNrdG9wL3JvYm90LWxlYXJuaW5nL2h1Z2dpbmdmYWNlLzYuYWN0b3ItY3JpdGljL2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UaAx1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgefZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
55
+ },
56
+ "_last_obs": {
57
+ ":type:": "<class 'collections.OrderedDict'>",
58
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAuYrLPg5FfT26whg/uYrLPg5FfT26whg/uYrLPg5FfT26whg/uYrLPg5FfT26whg/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAuXeEP1llLb4HdIm/Fc5lvtjqpb/S9DY+4YGtv8wfnL5n/sQ9lsSHv5mVtL6zOK2/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAC5iss+DkV9PbrCGD9cE1W7btzZOySKe7y5iss+DkV9PbrCGD9cE1W7btzZOySKe7y5iss+DkV9PbrCGD9cE1W7btzZOySKe7y5iss+DkV9PbrCGD9cE1W7btzZOySKe7yUaA5LBEsGhpRoEnSUUpR1Lg==",
59
+ "achieved_goal": "[[0.39754274 0.06183343 0.5967213 ]\n [0.39754274 0.06183343 0.5967213 ]\n [0.39754274 0.06183343 0.5967213 ]\n [0.39754274 0.06183343 0.5967213 ]]",
60
+ "desired_goal": "[[ 1.0349036 -0.16933192 -1.0738534 ]\n [-0.22441895 -1.2962294 0.17866829]\n [-1.3555261 -0.3049301 0.09618836]\n [-1.0606868 -0.35270384 -1.3532928 ]]",
61
+ "observation": "[[ 0.39754274 0.06183343 0.5967213 -0.00325128 0.00664859 -0.01535276]\n [ 0.39754274 0.06183343 0.5967213 -0.00325128 0.00664859 -0.01535276]\n [ 0.39754274 0.06183343 0.5967213 -0.00325128 0.00664859 -0.01535276]\n [ 0.39754274 0.06183343 0.5967213 -0.00325128 0.00664859 -0.01535276]]"
62
+ },
63
+ "_last_episode_starts": {
64
+ ":type:": "<class 'numpy.ndarray'>",
65
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
66
+ },
67
+ "_last_original_obs": {
68
+ ":type:": "<class 'collections.OrderedDict'>",
69
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAARjegPTBlObwASFw9kQ60vVyDmL3t9RM+aL/mPchSeD3CZyk+YKEdPFwGQTz5xJQ+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
70
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
71
+ "desired_goal": "[[ 0.07823043 -0.01131563 0.0537796 ]\n [-0.08791841 -0.0744693 0.14449282]\n [ 0.11266977 0.06062582 0.16543487]\n [ 0.00962099 0.0117813 0.29056528]]",
72
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
73
+ },
74
+ "_episode_num": 0,
75
+ "use_sde": false,
76
+ "sde_sample_freq": -1,
77
+ "_current_progress_remaining": 0.0,
78
+ "ep_info_buffer": {
79
+ ":type:": "<class 'collections.deque'>",
80
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIiZenc0WJB8CUhpRSlIwBbJRLMowBdJRHQJs+8mUnogV1fZQoaAZoCWgPQwiXytsRTsvxv5SGlFKUaBVLMmgWR0CbPoU3n6l+dX2UKGgGaAloD0MIIoyfxr3ZFcCUhpRSlGgVSzJoFkdAmz4lSKm8/XV9lChoBmgJaA9DCL1uERjrGxLAlIaUUpRoFUsyaBZHQJs9wVZcLSh1fZQoaAZoCWgPQwi+vWvQlz4AwJSGlFKUaBVLMmgWR0CbQDkGzKLbdX2UKGgGaAloD0MIhGHAkqu4AsCUhpRSlGgVSzJoFkdAmz/L3bmEG3V9lChoBmgJaA9DCMk5sYf2Mfa/lIaUUpRoFUsyaBZHQJs/bFHavid1fZQoaAZoCWgPQwhVibK3lNMFwJSGlFKUaBVLMmgWR0CbPwjBEa2ndX2UKGgGaAloD0MIPBbbpKLx87+UhpRSlGgVSzJoFkdAm0F5HEuQIXV9lChoBmgJaA9DCK29T1WhoQnAlIaUUpRoFUsyaBZHQJtBC36Q/5d1fZQoaAZoCWgPQwiSrpl8sw33v5SGlFKUaBVLMmgWR0CbQKsT37DVdX2UKGgGaAloD0MIipP7HYoCBsCUhpRSlGgVSzJoFkdAm0BG65Gz8nV9lChoBmgJaA9DCHXN5Jttbg7AlIaUUpRoFUsyaBZHQJtCyuLaVUx1fZQoaAZoCWgPQwgw2XiwxS4BwJSGlFKUaBVLMmgWR0CbQl2mpEQYdX2UKGgGaAloD0MIdA0zNJ5I+r+UhpRSlGgVSzJoFkdAm0H9SMtK7XV9lChoBmgJaA9DCIKOVrWko/y/lIaUUpRoFUsyaBZHQJtBmSTyJ9B1fZQoaAZoCWgPQwiDUrRyL/AGwJSGlFKUaBVLMmgWR0CbRAYsNDtxdX2UKGgGaAloD0MIbw7Xag/7BMCUhpRSlGgVSzJoFkdAm0OYwRGtp3V9lChoBmgJaA9DCAYN/RNcbPO/lIaUUpRoFUsyaBZHQJtDOHdoFmp1fZQoaAZoCWgPQwiEKcql8csDwJSGlFKUaBVLMmgWR0CbQtSyt3fRdX2UKGgGaAloD0MIXvOqzmphAcCUhpRSlGgVSzJoFkdAm0VZ9RaX8nV9lChoBmgJaA9DCO6yX3e60wrAlIaUUpRoFUsyaBZHQJtE7LwF1Sx1fZQoaAZoCWgPQwgpr5XQXVIJwJSGlFKUaBVLMmgWR0CbRIyuZCv6dX2UKGgGaAloD0MI0cyTawqk97+UhpRSlGgVSzJoFkdAm0QotQKrrHV9lChoBmgJaA9DCE33OqkvawHAlIaUUpRoFUsyaBZHQJtGqYoiLVF1fZQoaAZoCWgPQwhjmuleJ/Xxv5SGlFKUaBVLMmgWR0CbRjwNb1RMdX2UKGgGaAloD0MIYW73cp/c+r+UhpRSlGgVSzJoFkdAm0Xbm6oVEnV9lChoBmgJaA9DCP2IX7GGSwLAlIaUUpRoFUsyaBZHQJtFd2JSBLB1fZQoaAZoCWgPQwgD0ZMyqeH4v5SGlFKUaBVLMmgWR0CbR/HkcS5BdX2UKGgGaAloD0MIRl9BmrHoAMCUhpRSlGgVSzJoFkdAm0eElAu7H3V9lChoBmgJaA9DCHF0le6u8/i/lIaUUpRoFUsyaBZHQJtHJELH+611fZQoaAZoCWgPQwgCYadYNUj9v5SGlFKUaBVLMmgWR0CbRsAvtdAxdX2UKGgGaAloD0MIAFRx4xaDFsCUhpRSlGgVSzJoFkdAm0k7QokRjHV9lChoBmgJaA9DCEUtza0QlvO/lIaUUpRoFUsyaBZHQJtIzf642CN1fZQoaAZoCWgPQwiZnxuaspMKwJSGlFKUaBVLMmgWR0CbSG5OafBfdX2UKGgGaAloD0MImaCGb2HdAMCUhpRSlGgVSzJoFkdAm0gKrFOwgXV9lChoBmgJaA9DCF653jZTIQ3AlIaUUpRoFUsyaBZHQJtKi2x6fJ51fZQoaAZoCWgPQwh3TUhrDPr0v5SGlFKUaBVLMmgWR0CbSh4A0bcXdX2UKGgGaAloD0MIYOXQItv5AsCUhpRSlGgVSzJoFkdAm0m9nPE873V9lChoBmgJaA9DCBwJNNjUuQvAlIaUUpRoFUsyaBZHQJtJWXF98Z11fZQoaAZoCWgPQwi8ytqmeBz/v5SGlFKUaBVLMmgWR0CbS86XSjQBdX2UKGgGaAloD0MIToBh+fOtAMCUhpRSlGgVSzJoFkdAm0tg/xDst3V9lChoBmgJaA9DCN3sD5Tbdv2/lIaUUpRoFUsyaBZHQJtLAM4LkS51fZQoaAZoCWgPQwj1EI3uIDb3v5SGlFKUaBVLMmgWR0CbSpyVObiIdX2UKGgGaAloD0MIw5/hzRpcAMCUhpRSlGgVSzJoFkdAm00Lm2b5M3V9lChoBmgJaA9DCBAlWvJ4WgLAlIaUUpRoFUsyaBZHQJtMnm+0w8J1fZQoaAZoCWgPQwjHnGfsSxYHwJSGlFKUaBVLMmgWR0CbTD6oVEeAdX2UKGgGaAloD0MIFOgTeZK0AMCUhpRSlGgVSzJoFkdAm0vaynk1dnV9lChoBmgJaA9DCLnDJjJzoQDAlIaUUpRoFUsyaBZHQJtOQ5q/M4d1fZQoaAZoCWgPQwhkeVc9YF76v5SGlFKUaBVLMmgWR0CbTdY/3WWhdX2UKGgGaAloD0MIf6MdN/zu+r+UhpRSlGgVSzJoFkdAm011/x2B8XV9lChoBmgJaA9DCMHj27sGTRLAlIaUUpRoFUsyaBZHQJtNEfeUILR1fZQoaAZoCWgPQwjd7uU+OYrzv5SGlFKUaBVLMmgWR0CbT3czZYgadX2UKGgGaAloD0MIjNtoAG9B+b+UhpRSlGgVSzJoFkdAm08JqdpZfXV9lChoBmgJaA9DCErRyr3AbAXAlIaUUpRoFUsyaBZHQJtOqTSsr/d1fZQoaAZoCWgPQwjrH0Qy5GgQwJSGlFKUaBVLMmgWR0CbTkUKArhBdX2UKGgGaAloD0MINnf0v1xrA8CUhpRSlGgVSzJoFkdAm1C4PkJa7nV9lChoBmgJaA9DCONsOgK4mQHAlIaUUpRoFUsyaBZHQJtQSsHSncd1fZQoaAZoCWgPQwhtxmmIKpwBwJSGlFKUaBVLMmgWR0CbT+qX4TK1dX2UKGgGaAloD0MIl8lwPJ+B/L+UhpRSlGgVSzJoFkdAm0+GlVLi/HV9lChoBmgJaA9DCJ6ayw2G+gjAlIaUUpRoFUsyaBZHQJtR9C8e0Xx1fZQoaAZoCWgPQwioOA68Wm75v5SGlFKUaBVLMmgWR0CbUYbI91U3dX2UKGgGaAloD0MIHxFTIok+AMCUhpRSlGgVSzJoFkdAm1Ema+evp3V9lChoBmgJaA9DCEiLM4Y5wfy/lIaUUpRoFUsyaBZHQJtQwmJFb3Z1fZQoaAZoCWgPQwgnhuRk4vYDwJSGlFKUaBVLMmgWR0CbUzLh73PBdX2UKGgGaAloD0MI4lZBDHQt+b+UhpRSlGgVSzJoFkdAm1LF7Y02tXV9lChoBmgJaA9DCKdbdoh/mP6/lIaUUpRoFUsyaBZHQJtSZb6guh91fZQoaAZoCWgPQwi6u86G/DP8v5SGlFKUaBVLMmgWR0CbUgIMz/IbdX2UKGgGaAloD0MIBDxp4bIK/7+UhpRSlGgVSzJoFkdAm1SEi6g/T3V9lChoBmgJaA9DCOaWVkPinvq/lIaUUpRoFUsyaBZHQJtUF3HJcPh1fZQoaAZoCWgPQwhk6UMX1LcKwJSGlFKUaBVLMmgWR0CbU7cyFfzCdX2UKGgGaAloD0MISyL7IMsCAMCUhpRSlGgVSzJoFkdAm1NTGLk0anV9lChoBmgJaA9DCGsqi8IuCv6/lIaUUpRoFUsyaBZHQJtVzJo0ygx1fZQoaAZoCWgPQwgg66nVV1f/v5SGlFKUaBVLMmgWR0CbVV+YMOPOdX2UKGgGaAloD0MI4WHaN/cX+r+UhpRSlGgVSzJoFkdAm1T/ci4axXV9lChoBmgJaA9DCL5QwHYw4ve/lIaUUpRoFUsyaBZHQJtUm2phnap1fZQoaAZoCWgPQwhI4A8///36v5SGlFKUaBVLMmgWR0CbVx7oSteVdX2UKGgGaAloD0MITBqjdVR1+r+UhpRSlGgVSzJoFkdAm1axc/t6X3V9lChoBmgJaA9DCET7WMFvQ/a/lIaUUpRoFUsyaBZHQJtWUVeruIB1fZQoaAZoCWgPQwg0R1Z+GUz/v5SGlFKUaBVLMmgWR0CbVe1kUbkwdX2UKGgGaAloD0MIM4l6wac597+UhpRSlGgVSzJoFkdAm1hYjbBXS3V9lChoBmgJaA9DCHaMKy6Oyuy/lIaUUpRoFUsyaBZHQJtX6vjfek51fZQoaAZoCWgPQwg9fQT+8PP6v5SGlFKUaBVLMmgWR0CbV4qMWGh3dX2UKGgGaAloD0MI9kNssHCS/b+UhpRSlGgVSzJoFkdAm1cmr4nF53V9lChoBmgJaA9DCPflzHaFfgHAlIaUUpRoFUsyaBZHQJtZsPz4DcN1fZQoaAZoCWgPQwhQq+gPzbwOwJSGlFKUaBVLMmgWR0CbWUPnSv1UdX2UKGgGaAloD0MIiuPAq+XuCcCUhpRSlGgVSzJoFkdAm1jkMspXqHV9lChoBmgJaA9DCMnp6/maJfu/lIaUUpRoFUsyaBZHQJtYgJw84gl1fZQoaAZoCWgPQwjGGFjH8eMJwJSGlFKUaBVLMmgWR0CbWu/ag261dX2UKGgGaAloD0MI1eyBVmAI/L+UhpRSlGgVSzJoFkdAm1qCVrylN3V9lChoBmgJaA9DCNGWcymuqv+/lIaUUpRoFUsyaBZHQJtaIfIS13N1fZQoaAZoCWgPQwjRyr3ArPACwJSGlFKUaBVLMmgWR0CbWb3+uNgjdX2UKGgGaAloD0MIcVXZd0UwCMCUhpRSlGgVSzJoFkdAm1xFZX+2mnV9lChoBmgJaA9DCPW8GwsK0xTAlIaUUpRoFUsyaBZHQJtb2CROk+J1fZQoaAZoCWgPQwh3LSEf9Gz0v5SGlFKUaBVLMmgWR0CbW3eqaPS2dX2UKGgGaAloD0MIzVoKSPuf/L+UhpRSlGgVSzJoFkdAm1sT3IuGsXV9lChoBmgJaA9DCBk9t9CVyP+/lIaUUpRoFUsyaBZHQJtdhFYuCf91fZQoaAZoCWgPQwhdT3Rd+AH8v5SGlFKUaBVLMmgWR0CbXRbayrxRdX2UKGgGaAloD0MIZHPVPEek/b+UhpRSlGgVSzJoFkdAm1y2hdt2tHV9lChoBmgJaA9DCAfr/xzmS/i/lIaUUpRoFUsyaBZHQJtcUnZ00WN1ZS4="
81
+ },
82
+ "ep_success_buffer": {
83
+ ":type:": "<class 'collections.deque'>",
84
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
85
+ },
86
+ "_n_updates": 50000,
87
+ "n_steps": 5,
88
+ "gamma": 0.99,
89
+ "gae_lambda": 1.0,
90
+ "ent_coef": 0.0,
91
+ "vf_coef": 0.5,
92
+ "max_grad_norm": 0.5,
93
+ "normalize_advantage": false
94
+ }
a2c-PandaReachDense-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:181c2afe40da0d23ddbc97c180301035aa7c04f4d0ee4557211463204e238f58
3
+ size 44734
a2c-PandaReachDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6e2f54358ec5fd6d91f91162302697e5718a14ec991b0518693057c16bf72028
3
+ size 46014
a2c-PandaReachDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.13.0-30-generic-x86_64-with-glibc2.29 # 33~20.04.1-Ubuntu SMP Mon Feb 7 14:25:10 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu117
5
+ - GPU Enabled: True
6
+ - Numpy: 1.24.1
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f1e98829820>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f1e9881efc0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674565192194971092, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVqwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMeS9ob21lL2FjbC9EZXNrdG9wL3JvYm90LWxlYXJuaW5nL2h1Z2dpbmdmYWNlLzYuYWN0b3ItY3JpdGljL2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UaAx1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgefZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAuYrLPg5FfT26whg/uYrLPg5FfT26whg/uYrLPg5FfT26whg/uYrLPg5FfT26whg/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAuXeEP1llLb4HdIm/Fc5lvtjqpb/S9DY+4YGtv8wfnL5n/sQ9lsSHv5mVtL6zOK2/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAC5iss+DkV9PbrCGD9cE1W7btzZOySKe7y5iss+DkV9PbrCGD9cE1W7btzZOySKe7y5iss+DkV9PbrCGD9cE1W7btzZOySKe7y5iss+DkV9PbrCGD9cE1W7btzZOySKe7yUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.39754274 0.06183343 0.5967213 ]\n [0.39754274 0.06183343 0.5967213 ]\n [0.39754274 0.06183343 0.5967213 ]\n [0.39754274 0.06183343 0.5967213 ]]", "desired_goal": "[[ 1.0349036 -0.16933192 -1.0738534 ]\n [-0.22441895 -1.2962294 0.17866829]\n [-1.3555261 -0.3049301 0.09618836]\n [-1.0606868 -0.35270384 -1.3532928 ]]", "observation": "[[ 0.39754274 0.06183343 0.5967213 -0.00325128 0.00664859 -0.01535276]\n [ 0.39754274 0.06183343 0.5967213 -0.00325128 0.00664859 -0.01535276]\n [ 0.39754274 0.06183343 0.5967213 -0.00325128 0.00664859 -0.01535276]\n [ 0.39754274 0.06183343 0.5967213 -0.00325128 0.00664859 -0.01535276]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAARjegPTBlObwASFw9kQ60vVyDmL3t9RM+aL/mPchSeD3CZyk+YKEdPFwGQTz5xJQ+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.07823043 -0.01131563 0.0537796 ]\n [-0.08791841 -0.0744693 0.14449282]\n [ 0.11266977 0.06062582 0.16543487]\n [ 0.00962099 0.0117813 0.29056528]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIiZenc0WJB8CUhpRSlIwBbJRLMowBdJRHQJs+8mUnogV1fZQoaAZoCWgPQwiXytsRTsvxv5SGlFKUaBVLMmgWR0CbPoU3n6l+dX2UKGgGaAloD0MIIoyfxr3ZFcCUhpRSlGgVSzJoFkdAmz4lSKm8/XV9lChoBmgJaA9DCL1uERjrGxLAlIaUUpRoFUsyaBZHQJs9wVZcLSh1fZQoaAZoCWgPQwi+vWvQlz4AwJSGlFKUaBVLMmgWR0CbQDkGzKLbdX2UKGgGaAloD0MIhGHAkqu4AsCUhpRSlGgVSzJoFkdAmz/L3bmEG3V9lChoBmgJaA9DCMk5sYf2Mfa/lIaUUpRoFUsyaBZHQJs/bFHavid1fZQoaAZoCWgPQwhVibK3lNMFwJSGlFKUaBVLMmgWR0CbPwjBEa2ndX2UKGgGaAloD0MIPBbbpKLx87+UhpRSlGgVSzJoFkdAm0F5HEuQIXV9lChoBmgJaA9DCK29T1WhoQnAlIaUUpRoFUsyaBZHQJtBC36Q/5d1fZQoaAZoCWgPQwiSrpl8sw33v5SGlFKUaBVLMmgWR0CbQKsT37DVdX2UKGgGaAloD0MIipP7HYoCBsCUhpRSlGgVSzJoFkdAm0BG65Gz8nV9lChoBmgJaA9DCHXN5Jttbg7AlIaUUpRoFUsyaBZHQJtCyuLaVUx1fZQoaAZoCWgPQwgw2XiwxS4BwJSGlFKUaBVLMmgWR0CbQl2mpEQYdX2UKGgGaAloD0MIdA0zNJ5I+r+UhpRSlGgVSzJoFkdAm0H9SMtK7XV9lChoBmgJaA9DCIKOVrWko/y/lIaUUpRoFUsyaBZHQJtBmSTyJ9B1fZQoaAZoCWgPQwiDUrRyL/AGwJSGlFKUaBVLMmgWR0CbRAYsNDtxdX2UKGgGaAloD0MIbw7Xag/7BMCUhpRSlGgVSzJoFkdAm0OYwRGtp3V9lChoBmgJaA9DCAYN/RNcbPO/lIaUUpRoFUsyaBZHQJtDOHdoFmp1fZQoaAZoCWgPQwiEKcql8csDwJSGlFKUaBVLMmgWR0CbQtSyt3fRdX2UKGgGaAloD0MIXvOqzmphAcCUhpRSlGgVSzJoFkdAm0VZ9RaX8nV9lChoBmgJaA9DCO6yX3e60wrAlIaUUpRoFUsyaBZHQJtE7LwF1Sx1fZQoaAZoCWgPQwgpr5XQXVIJwJSGlFKUaBVLMmgWR0CbRIyuZCv6dX2UKGgGaAloD0MI0cyTawqk97+UhpRSlGgVSzJoFkdAm0QotQKrrHV9lChoBmgJaA9DCE33OqkvawHAlIaUUpRoFUsyaBZHQJtGqYoiLVF1fZQoaAZoCWgPQwhjmuleJ/Xxv5SGlFKUaBVLMmgWR0CbRjwNb1RMdX2UKGgGaAloD0MIYW73cp/c+r+UhpRSlGgVSzJoFkdAm0Xbm6oVEnV9lChoBmgJaA9DCP2IX7GGSwLAlIaUUpRoFUsyaBZHQJtFd2JSBLB1fZQoaAZoCWgPQwgD0ZMyqeH4v5SGlFKUaBVLMmgWR0CbR/HkcS5BdX2UKGgGaAloD0MIRl9BmrHoAMCUhpRSlGgVSzJoFkdAm0eElAu7H3V9lChoBmgJaA9DCHF0le6u8/i/lIaUUpRoFUsyaBZHQJtHJELH+611fZQoaAZoCWgPQwgCYadYNUj9v5SGlFKUaBVLMmgWR0CbRsAvtdAxdX2UKGgGaAloD0MIAFRx4xaDFsCUhpRSlGgVSzJoFkdAm0k7QokRjHV9lChoBmgJaA9DCEUtza0QlvO/lIaUUpRoFUsyaBZHQJtIzf642CN1fZQoaAZoCWgPQwiZnxuaspMKwJSGlFKUaBVLMmgWR0CbSG5OafBfdX2UKGgGaAloD0MImaCGb2HdAMCUhpRSlGgVSzJoFkdAm0gKrFOwgXV9lChoBmgJaA9DCF653jZTIQ3AlIaUUpRoFUsyaBZHQJtKi2x6fJ51fZQoaAZoCWgPQwh3TUhrDPr0v5SGlFKUaBVLMmgWR0CbSh4A0bcXdX2UKGgGaAloD0MIYOXQItv5AsCUhpRSlGgVSzJoFkdAm0m9nPE873V9lChoBmgJaA9DCBwJNNjUuQvAlIaUUpRoFUsyaBZHQJtJWXF98Z11fZQoaAZoCWgPQwi8ytqmeBz/v5SGlFKUaBVLMmgWR0CbS86XSjQBdX2UKGgGaAloD0MIToBh+fOtAMCUhpRSlGgVSzJoFkdAm0tg/xDst3V9lChoBmgJaA9DCN3sD5Tbdv2/lIaUUpRoFUsyaBZHQJtLAM4LkS51fZQoaAZoCWgPQwj1EI3uIDb3v5SGlFKUaBVLMmgWR0CbSpyVObiIdX2UKGgGaAloD0MIw5/hzRpcAMCUhpRSlGgVSzJoFkdAm00Lm2b5M3V9lChoBmgJaA9DCBAlWvJ4WgLAlIaUUpRoFUsyaBZHQJtMnm+0w8J1fZQoaAZoCWgPQwjHnGfsSxYHwJSGlFKUaBVLMmgWR0CbTD6oVEeAdX2UKGgGaAloD0MIFOgTeZK0AMCUhpRSlGgVSzJoFkdAm0vaynk1dnV9lChoBmgJaA9DCLnDJjJzoQDAlIaUUpRoFUsyaBZHQJtOQ5q/M4d1fZQoaAZoCWgPQwhkeVc9YF76v5SGlFKUaBVLMmgWR0CbTdY/3WWhdX2UKGgGaAloD0MIf6MdN/zu+r+UhpRSlGgVSzJoFkdAm011/x2B8XV9lChoBmgJaA9DCMHj27sGTRLAlIaUUpRoFUsyaBZHQJtNEfeUILR1fZQoaAZoCWgPQwjd7uU+OYrzv5SGlFKUaBVLMmgWR0CbT3czZYgadX2UKGgGaAloD0MIjNtoAG9B+b+UhpRSlGgVSzJoFkdAm08JqdpZfXV9lChoBmgJaA9DCErRyr3AbAXAlIaUUpRoFUsyaBZHQJtOqTSsr/d1fZQoaAZoCWgPQwjrH0Qy5GgQwJSGlFKUaBVLMmgWR0CbTkUKArhBdX2UKGgGaAloD0MINnf0v1xrA8CUhpRSlGgVSzJoFkdAm1C4PkJa7nV9lChoBmgJaA9DCONsOgK4mQHAlIaUUpRoFUsyaBZHQJtQSsHSncd1fZQoaAZoCWgPQwhtxmmIKpwBwJSGlFKUaBVLMmgWR0CbT+qX4TK1dX2UKGgGaAloD0MIl8lwPJ+B/L+UhpRSlGgVSzJoFkdAm0+GlVLi/HV9lChoBmgJaA9DCJ6ayw2G+gjAlIaUUpRoFUsyaBZHQJtR9C8e0Xx1fZQoaAZoCWgPQwioOA68Wm75v5SGlFKUaBVLMmgWR0CbUYbI91U3dX2UKGgGaAloD0MIHxFTIok+AMCUhpRSlGgVSzJoFkdAm1Ema+evp3V9lChoBmgJaA9DCEiLM4Y5wfy/lIaUUpRoFUsyaBZHQJtQwmJFb3Z1fZQoaAZoCWgPQwgnhuRk4vYDwJSGlFKUaBVLMmgWR0CbUzLh73PBdX2UKGgGaAloD0MI4lZBDHQt+b+UhpRSlGgVSzJoFkdAm1LF7Y02tXV9lChoBmgJaA9DCKdbdoh/mP6/lIaUUpRoFUsyaBZHQJtSZb6guh91fZQoaAZoCWgPQwi6u86G/DP8v5SGlFKUaBVLMmgWR0CbUgIMz/IbdX2UKGgGaAloD0MIBDxp4bIK/7+UhpRSlGgVSzJoFkdAm1SEi6g/T3V9lChoBmgJaA9DCOaWVkPinvq/lIaUUpRoFUsyaBZHQJtUF3HJcPh1fZQoaAZoCWgPQwhk6UMX1LcKwJSGlFKUaBVLMmgWR0CbU7cyFfzCdX2UKGgGaAloD0MISyL7IMsCAMCUhpRSlGgVSzJoFkdAm1NTGLk0anV9lChoBmgJaA9DCGsqi8IuCv6/lIaUUpRoFUsyaBZHQJtVzJo0ygx1fZQoaAZoCWgPQwgg66nVV1f/v5SGlFKUaBVLMmgWR0CbVV+YMOPOdX2UKGgGaAloD0MI4WHaN/cX+r+UhpRSlGgVSzJoFkdAm1T/ci4axXV9lChoBmgJaA9DCL5QwHYw4ve/lIaUUpRoFUsyaBZHQJtUm2phnap1fZQoaAZoCWgPQwhI4A8///36v5SGlFKUaBVLMmgWR0CbVx7oSteVdX2UKGgGaAloD0MITBqjdVR1+r+UhpRSlGgVSzJoFkdAm1axc/t6X3V9lChoBmgJaA9DCET7WMFvQ/a/lIaUUpRoFUsyaBZHQJtWUVeruIB1fZQoaAZoCWgPQwg0R1Z+GUz/v5SGlFKUaBVLMmgWR0CbVe1kUbkwdX2UKGgGaAloD0MIM4l6wac597+UhpRSlGgVSzJoFkdAm1hYjbBXS3V9lChoBmgJaA9DCHaMKy6Oyuy/lIaUUpRoFUsyaBZHQJtX6vjfek51fZQoaAZoCWgPQwg9fQT+8PP6v5SGlFKUaBVLMmgWR0CbV4qMWGh3dX2UKGgGaAloD0MI9kNssHCS/b+UhpRSlGgVSzJoFkdAm1cmr4nF53V9lChoBmgJaA9DCPflzHaFfgHAlIaUUpRoFUsyaBZHQJtZsPz4DcN1fZQoaAZoCWgPQwhQq+gPzbwOwJSGlFKUaBVLMmgWR0CbWUPnSv1UdX2UKGgGaAloD0MIiuPAq+XuCcCUhpRSlGgVSzJoFkdAm1jkMspXqHV9lChoBmgJaA9DCMnp6/maJfu/lIaUUpRoFUsyaBZHQJtYgJw84gl1fZQoaAZoCWgPQwjGGFjH8eMJwJSGlFKUaBVLMmgWR0CbWu/ag261dX2UKGgGaAloD0MI1eyBVmAI/L+UhpRSlGgVSzJoFkdAm1qCVrylN3V9lChoBmgJaA9DCNGWcymuqv+/lIaUUpRoFUsyaBZHQJtaIfIS13N1fZQoaAZoCWgPQwjRyr3ArPACwJSGlFKUaBVLMmgWR0CbWb3+uNgjdX2UKGgGaAloD0MIcVXZd0UwCMCUhpRSlGgVSzJoFkdAm1xFZX+2mnV9lChoBmgJaA9DCPW8GwsK0xTAlIaUUpRoFUsyaBZHQJtb2CROk+J1fZQoaAZoCWgPQwh3LSEf9Gz0v5SGlFKUaBVLMmgWR0CbW3eqaPS2dX2UKGgGaAloD0MIzVoKSPuf/L+UhpRSlGgVSzJoFkdAm1sT3IuGsXV9lChoBmgJaA9DCBk9t9CVyP+/lIaUUpRoFUsyaBZHQJtdhFYuCf91fZQoaAZoCWgPQwhdT3Rd+AH8v5SGlFKUaBVLMmgWR0CbXRbayrxRdX2UKGgGaAloD0MIZHPVPEek/b+UhpRSlGgVSzJoFkdAm1y2hdt2tHV9lChoBmgJaA9DCAfr/xzmS/i/lIaUUpRoFUsyaBZHQJtcUnZ00WN1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.13.0-30-generic-x86_64-with-glibc2.29 # 33~20.04.1-Ubuntu SMP Mon Feb 7 14:25:10 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu117", "GPU Enabled": "True", "Numpy": "1.24.1", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (714 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -1.9036436314694583, "std_reward": 0.6739198312064675, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-24T22:29:05.100340"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1f490e5f5ad776621a496d91b36a12265b81862fd038751ec10f8b8eec7ca4ad
3
+ size 3212