nguyenduchuyiu commited on
Commit
4106ecc
1 Parent(s): 7c636aa

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ replay.mp4 filter=lfs diff=lfs merge=lfs -text
.summary/0/events.out.tfevents.1723795229.nguyen-duc-huy-G5-GD ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:289d1e6b9be54b169af1b241afa776ce78652aca2fca96b23820427056a88010
3
+ size 236016
README.md ADDED
@@ -0,0 +1,56 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: sample-factory
3
+ tags:
4
+ - deep-reinforcement-learning
5
+ - reinforcement-learning
6
+ - sample-factory
7
+ model-index:
8
+ - name: APPO
9
+ results:
10
+ - task:
11
+ type: reinforcement-learning
12
+ name: reinforcement-learning
13
+ dataset:
14
+ name: doom_health_gathering_supreme
15
+ type: doom_health_gathering_supreme
16
+ metrics:
17
+ - type: mean_reward
18
+ value: 9.95 +/- 4.64
19
+ name: mean_reward
20
+ verified: false
21
+ ---
22
+
23
+ A(n) **APPO** model trained on the **doom_health_gathering_supreme** environment.
24
+
25
+ This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory.
26
+ Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/
27
+
28
+
29
+ ## Downloading the model
30
+
31
+ After installing Sample-Factory, download the model with:
32
+ ```
33
+ python -m sample_factory.huggingface.load_from_hub -r nguyenduchuyiu/rl_course_vizdoom_health_gathering_supreme
34
+ ```
35
+
36
+
37
+ ## Using the model
38
+
39
+ To run the model after download, use the `enjoy` script corresponding to this environment:
40
+ ```
41
+ python -m <path.to.enjoy.module> --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme
42
+ ```
43
+
44
+
45
+ You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag.
46
+ See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details
47
+
48
+ ## Training with this model
49
+
50
+ To continue training with this model, use the `train` script corresponding to this environment:
51
+ ```
52
+ python -m <path.to.train.module> --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme --restart_behavior=resume --train_for_env_steps=10000000000
53
+ ```
54
+
55
+ Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
56
+
checkpoint_p0/best_000000766_3137536_reward_25.046.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dabad795431324f790b46d76743f359b3e6eb8bfd34be2f978cd8d9f735ab9fe
3
+ size 34929051
checkpoint_p0/checkpoint_000000943_3862528.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1472f59bd8b7b19c944b44e583593d9a00d93daf093267b8cf2b2edb54fececc
3
+ size 34929477
checkpoint_p0/checkpoint_000000978_4005888.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:afc8265d51f3c19fba60076e0fe69160d9e5b26ecfb214094f525781b7d282db
3
+ size 34929477
config.json ADDED
@@ -0,0 +1,142 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "help": false,
3
+ "algo": "APPO",
4
+ "env": "doom_health_gathering_supreme",
5
+ "experiment": "default_experiment",
6
+ "train_dir": "/media/nguyen-duc-huy/E/Code/Deep_RL/train_dir",
7
+ "restart_behavior": "resume",
8
+ "device": "gpu",
9
+ "seed": null,
10
+ "num_policies": 1,
11
+ "async_rl": true,
12
+ "serial_mode": false,
13
+ "batched_sampling": false,
14
+ "num_batches_to_accumulate": 2,
15
+ "worker_num_splits": 2,
16
+ "policy_workers_per_policy": 1,
17
+ "max_policy_lag": 1000,
18
+ "num_workers": 8,
19
+ "num_envs_per_worker": 4,
20
+ "batch_size": 1024,
21
+ "num_batches_per_epoch": 1,
22
+ "num_epochs": 1,
23
+ "rollout": 32,
24
+ "recurrence": 32,
25
+ "shuffle_minibatches": false,
26
+ "gamma": 0.99,
27
+ "reward_scale": 1.0,
28
+ "reward_clip": 1000.0,
29
+ "value_bootstrap": false,
30
+ "normalize_returns": true,
31
+ "exploration_loss_coeff": 0.001,
32
+ "value_loss_coeff": 0.5,
33
+ "kl_loss_coeff": 0.0,
34
+ "exploration_loss": "symmetric_kl",
35
+ "gae_lambda": 0.95,
36
+ "ppo_clip_ratio": 0.1,
37
+ "ppo_clip_value": 0.2,
38
+ "with_vtrace": false,
39
+ "vtrace_rho": 1.0,
40
+ "vtrace_c": 1.0,
41
+ "optimizer": "adam",
42
+ "adam_eps": 1e-06,
43
+ "adam_beta1": 0.9,
44
+ "adam_beta2": 0.999,
45
+ "max_grad_norm": 4.0,
46
+ "learning_rate": 0.0001,
47
+ "lr_schedule": "constant",
48
+ "lr_schedule_kl_threshold": 0.008,
49
+ "lr_adaptive_min": 1e-06,
50
+ "lr_adaptive_max": 0.01,
51
+ "obs_subtract_mean": 0.0,
52
+ "obs_scale": 255.0,
53
+ "normalize_input": true,
54
+ "normalize_input_keys": null,
55
+ "decorrelate_experience_max_seconds": 0,
56
+ "decorrelate_envs_on_one_worker": true,
57
+ "actor_worker_gpus": [],
58
+ "set_workers_cpu_affinity": true,
59
+ "force_envs_single_thread": false,
60
+ "default_niceness": 0,
61
+ "log_to_file": true,
62
+ "experiment_summaries_interval": 10,
63
+ "flush_summaries_interval": 30,
64
+ "stats_avg": 100,
65
+ "summaries_use_frameskip": true,
66
+ "heartbeat_interval": 20,
67
+ "heartbeat_reporting_interval": 600,
68
+ "train_for_env_steps": 4000000,
69
+ "train_for_seconds": 10000000000,
70
+ "save_every_sec": 120,
71
+ "keep_checkpoints": 2,
72
+ "load_checkpoint_kind": "latest",
73
+ "save_milestones_sec": -1,
74
+ "save_best_every_sec": 5,
75
+ "save_best_metric": "reward",
76
+ "save_best_after": 100000,
77
+ "benchmark": false,
78
+ "encoder_mlp_layers": [
79
+ 512,
80
+ 512
81
+ ],
82
+ "encoder_conv_architecture": "convnet_simple",
83
+ "encoder_conv_mlp_layers": [
84
+ 512
85
+ ],
86
+ "use_rnn": true,
87
+ "rnn_size": 512,
88
+ "rnn_type": "gru",
89
+ "rnn_num_layers": 1,
90
+ "decoder_mlp_layers": [],
91
+ "nonlinearity": "elu",
92
+ "policy_initialization": "orthogonal",
93
+ "policy_init_gain": 1.0,
94
+ "actor_critic_share_weights": true,
95
+ "adaptive_stddev": true,
96
+ "continuous_tanh_scale": 0.0,
97
+ "initial_stddev": 1.0,
98
+ "use_env_info_cache": false,
99
+ "env_gpu_actions": false,
100
+ "env_gpu_observations": true,
101
+ "env_frameskip": 4,
102
+ "env_framestack": 1,
103
+ "pixel_format": "CHW",
104
+ "use_record_episode_statistics": false,
105
+ "with_wandb": false,
106
+ "wandb_user": null,
107
+ "wandb_project": "sample_factory",
108
+ "wandb_group": null,
109
+ "wandb_job_type": "SF",
110
+ "wandb_tags": [],
111
+ "with_pbt": false,
112
+ "pbt_mix_policies_in_one_env": true,
113
+ "pbt_period_env_steps": 5000000,
114
+ "pbt_start_mutation": 20000000,
115
+ "pbt_replace_fraction": 0.3,
116
+ "pbt_mutation_rate": 0.15,
117
+ "pbt_replace_reward_gap": 0.1,
118
+ "pbt_replace_reward_gap_absolute": 1e-06,
119
+ "pbt_optimize_gamma": false,
120
+ "pbt_target_objective": "true_objective",
121
+ "pbt_perturb_min": 1.1,
122
+ "pbt_perturb_max": 1.5,
123
+ "num_agents": -1,
124
+ "num_humans": 0,
125
+ "num_bots": -1,
126
+ "start_bot_difficulty": null,
127
+ "timelimit": null,
128
+ "res_w": 128,
129
+ "res_h": 72,
130
+ "wide_aspect_ratio": false,
131
+ "eval_env_frameskip": 1,
132
+ "fps": 35,
133
+ "command_line": "--env=doom_health_gathering_supreme --num_workers=8 --num_envs_per_worker=4 --train_for_env_steps=4000000",
134
+ "cli_args": {
135
+ "env": "doom_health_gathering_supreme",
136
+ "num_workers": 8,
137
+ "num_envs_per_worker": 4,
138
+ "train_for_env_steps": 4000000
139
+ },
140
+ "git_hash": "unknown",
141
+ "git_repo_name": "not a git repository"
142
+ }
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:497c3b529b4e1d8d65f5947de2b553139464c9c19c812fcb976ad1aa3c78cbab
3
+ size 19038547
sf_log.txt ADDED
@@ -0,0 +1,643 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [2024-08-16 15:00:33,731][09795] Saving configuration to /media/nguyen-duc-huy/E/Code/Deep_RL/train_dir/default_experiment/config.json...
2
+ [2024-08-16 15:00:33,732][09795] Rollout worker 0 uses device cpu
3
+ [2024-08-16 15:00:33,732][09795] Rollout worker 1 uses device cpu
4
+ [2024-08-16 15:00:33,732][09795] Rollout worker 2 uses device cpu
5
+ [2024-08-16 15:00:33,733][09795] Rollout worker 3 uses device cpu
6
+ [2024-08-16 15:00:33,733][09795] Rollout worker 4 uses device cpu
7
+ [2024-08-16 15:00:33,733][09795] Rollout worker 5 uses device cpu
8
+ [2024-08-16 15:00:33,733][09795] Rollout worker 6 uses device cpu
9
+ [2024-08-16 15:00:33,733][09795] Rollout worker 7 uses device cpu
10
+ [2024-08-16 15:00:33,773][09795] Using GPUs [0] for process 0 (actually maps to GPUs [0])
11
+ [2024-08-16 15:00:33,774][09795] InferenceWorker_p0-w0: min num requests: 2
12
+ [2024-08-16 15:00:33,804][09795] Starting all processes...
13
+ [2024-08-16 15:00:33,805][09795] Starting process learner_proc0
14
+ [2024-08-16 15:00:34,179][09795] Starting all processes...
15
+ [2024-08-16 15:00:34,183][09795] Starting process inference_proc0-0
16
+ [2024-08-16 15:00:34,183][09795] Starting process rollout_proc0
17
+ [2024-08-16 15:00:34,183][09795] Starting process rollout_proc1
18
+ [2024-08-16 15:00:34,184][09795] Starting process rollout_proc2
19
+ [2024-08-16 15:00:34,184][09795] Starting process rollout_proc3
20
+ [2024-08-16 15:00:34,184][09795] Starting process rollout_proc4
21
+ [2024-08-16 15:00:34,184][09795] Starting process rollout_proc5
22
+ [2024-08-16 15:00:34,184][09795] Starting process rollout_proc6
23
+ [2024-08-16 15:00:34,184][09795] Starting process rollout_proc7
24
+ [2024-08-16 15:00:36,347][19834] Worker 4 uses CPU cores [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
25
+ [2024-08-16 15:00:36,389][19831] Worker 0 uses CPU cores [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
26
+ [2024-08-16 15:00:36,463][19836] Worker 6 uses CPU cores [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
27
+ [2024-08-16 15:00:36,485][19830] Using GPUs [0] for process 0 (actually maps to GPUs [0])
28
+ [2024-08-16 15:00:36,485][19830] Set environment var CUDA_VISIBLE_DEVICES to '0' (GPU indices [0]) for inference process 0
29
+ [2024-08-16 15:00:36,500][19830] Num visible devices: 1
30
+ [2024-08-16 15:00:36,512][19832] Worker 3 uses CPU cores [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
31
+ [2024-08-16 15:00:36,512][19835] Worker 2 uses CPU cores [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
32
+ [2024-08-16 15:00:36,522][19817] Using GPUs [0] for process 0 (actually maps to GPUs [0])
33
+ [2024-08-16 15:00:36,522][19817] Set environment var CUDA_VISIBLE_DEVICES to '0' (GPU indices [0]) for learning process 0
34
+ [2024-08-16 15:00:36,535][19817] Num visible devices: 1
35
+ [2024-08-16 15:00:36,539][19817] Starting seed is not provided
36
+ [2024-08-16 15:00:36,539][19817] Using GPUs [0] for process 0 (actually maps to GPUs [0])
37
+ [2024-08-16 15:00:36,539][19817] Initializing actor-critic model on device cuda:0
38
+ [2024-08-16 15:00:36,539][19817] RunningMeanStd input shape: (3, 72, 128)
39
+ [2024-08-16 15:00:36,544][19817] RunningMeanStd input shape: (1,)
40
+ [2024-08-16 15:00:36,550][19833] Worker 1 uses CPU cores [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
41
+ [2024-08-16 15:00:36,553][19817] ConvEncoder: input_channels=3
42
+ [2024-08-16 15:00:36,561][19838] Worker 5 uses CPU cores [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
43
+ [2024-08-16 15:00:36,584][19837] Worker 7 uses CPU cores [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
44
+ [2024-08-16 15:00:36,653][19817] Conv encoder output size: 512
45
+ [2024-08-16 15:00:36,653][19817] Policy head output size: 512
46
+ [2024-08-16 15:00:36,671][19817] Created Actor Critic model with architecture:
47
+ [2024-08-16 15:00:36,671][19817] ActorCriticSharedWeights(
48
+ (obs_normalizer): ObservationNormalizer(
49
+ (running_mean_std): RunningMeanStdDictInPlace(
50
+ (running_mean_std): ModuleDict(
51
+ (obs): RunningMeanStdInPlace()
52
+ )
53
+ )
54
+ )
55
+ (returns_normalizer): RecursiveScriptModule(original_name=RunningMeanStdInPlace)
56
+ (encoder): VizdoomEncoder(
57
+ (basic_encoder): ConvEncoder(
58
+ (enc): RecursiveScriptModule(
59
+ original_name=ConvEncoderImpl
60
+ (conv_head): RecursiveScriptModule(
61
+ original_name=Sequential
62
+ (0): RecursiveScriptModule(original_name=Conv2d)
63
+ (1): RecursiveScriptModule(original_name=ELU)
64
+ (2): RecursiveScriptModule(original_name=Conv2d)
65
+ (3): RecursiveScriptModule(original_name=ELU)
66
+ (4): RecursiveScriptModule(original_name=Conv2d)
67
+ (5): RecursiveScriptModule(original_name=ELU)
68
+ )
69
+ (mlp_layers): RecursiveScriptModule(
70
+ original_name=Sequential
71
+ (0): RecursiveScriptModule(original_name=Linear)
72
+ (1): RecursiveScriptModule(original_name=ELU)
73
+ )
74
+ )
75
+ )
76
+ )
77
+ (core): ModelCoreRNN(
78
+ (core): GRU(512, 512)
79
+ )
80
+ (decoder): MlpDecoder(
81
+ (mlp): Identity()
82
+ )
83
+ (critic_linear): Linear(in_features=512, out_features=1, bias=True)
84
+ (action_parameterization): ActionParameterizationDefault(
85
+ (distribution_linear): Linear(in_features=512, out_features=5, bias=True)
86
+ )
87
+ )
88
+ [2024-08-16 15:00:36,886][19817] Using optimizer <class 'torch.optim.adam.Adam'>
89
+ [2024-08-16 15:00:37,506][19817] No checkpoints found
90
+ [2024-08-16 15:00:37,506][19817] Did not load from checkpoint, starting from scratch!
91
+ [2024-08-16 15:00:37,506][19817] Initialized policy 0 weights for model version 0
92
+ [2024-08-16 15:00:37,509][19817] LearnerWorker_p0 finished initialization!
93
+ [2024-08-16 15:00:37,509][19817] Using GPUs [0] for process 0 (actually maps to GPUs [0])
94
+ [2024-08-16 15:00:37,655][19830] RunningMeanStd input shape: (3, 72, 128)
95
+ [2024-08-16 15:00:37,656][19830] RunningMeanStd input shape: (1,)
96
+ [2024-08-16 15:00:37,664][19830] ConvEncoder: input_channels=3
97
+ [2024-08-16 15:00:37,732][19830] Conv encoder output size: 512
98
+ [2024-08-16 15:00:37,732][19830] Policy head output size: 512
99
+ [2024-08-16 15:00:37,760][09795] Inference worker 0-0 is ready!
100
+ [2024-08-16 15:00:37,760][09795] All inference workers are ready! Signal rollout workers to start!
101
+ [2024-08-16 15:00:37,795][19834] Doom resolution: 160x120, resize resolution: (128, 72)
102
+ [2024-08-16 15:00:37,796][19838] Doom resolution: 160x120, resize resolution: (128, 72)
103
+ [2024-08-16 15:00:37,796][19831] Doom resolution: 160x120, resize resolution: (128, 72)
104
+ [2024-08-16 15:00:37,796][19832] Doom resolution: 160x120, resize resolution: (128, 72)
105
+ [2024-08-16 15:00:37,807][19833] Doom resolution: 160x120, resize resolution: (128, 72)
106
+ [2024-08-16 15:00:37,807][19836] Doom resolution: 160x120, resize resolution: (128, 72)
107
+ [2024-08-16 15:00:37,807][19835] Doom resolution: 160x120, resize resolution: (128, 72)
108
+ [2024-08-16 15:00:37,810][19837] Doom resolution: 160x120, resize resolution: (128, 72)
109
+ [2024-08-16 15:00:37,865][19832] VizDoom game.init() threw an exception ViZDoomUnexpectedExitException('Controlled ViZDoom instance exited unexpectedly.'). Terminate process...
110
+ [2024-08-16 15:00:37,865][19832] EvtLoop [rollout_proc3_evt_loop, process=rollout_proc3] unhandled exception in slot='init' connected to emitter=Emitter(object_id='Sampler', signal_name='_inference_workers_initialized'), args=()
111
+ Traceback (most recent call last):
112
+ File "/media/nguyen-duc-huy/E/anaconda3/envs/rl-project/lib/python3.10/site-packages/sf_examples/vizdoom/doom/doom_gym.py", line 228, in _game_init
113
+ self.game.init()
114
+ vizdoom.vizdoom.ViZDoomUnexpectedExitException: Controlled ViZDoom instance exited unexpectedly.
115
+
116
+ During handling of the above exception, another exception occurred:
117
+
118
+ Traceback (most recent call last):
119
+ File "/media/nguyen-duc-huy/E/anaconda3/envs/rl-project/lib/python3.10/site-packages/signal_slot/signal_slot.py", line 355, in _process_signal
120
+ slot_callable(*args)
121
+ File "/media/nguyen-duc-huy/E/anaconda3/envs/rl-project/lib/python3.10/site-packages/sample_factory/algo/sampling/rollout_worker.py", line 150, in init
122
+ env_runner.init(self.timing)
123
+ File "/media/nguyen-duc-huy/E/anaconda3/envs/rl-project/lib/python3.10/site-packages/sample_factory/algo/sampling/non_batched_sampling.py", line 418, in init
124
+ self._reset()
125
+ File "/media/nguyen-duc-huy/E/anaconda3/envs/rl-project/lib/python3.10/site-packages/sample_factory/algo/sampling/non_batched_sampling.py", line 430, in _reset
126
+ observations, info = e.reset(seed=seed) # new way of doing seeding since Gym 0.26.0
127
+ File "/media/nguyen-duc-huy/E/anaconda3/envs/rl-project/lib/python3.10/site-packages/gymnasium/core.py", line 467, in reset
128
+ return self.env.reset(seed=seed, options=options)
129
+ File "/media/nguyen-duc-huy/E/anaconda3/envs/rl-project/lib/python3.10/site-packages/sample_factory/algo/utils/make_env.py", line 125, in reset
130
+ obs, info = self.env.reset(**kwargs)
131
+ File "/media/nguyen-duc-huy/E/anaconda3/envs/rl-project/lib/python3.10/site-packages/sample_factory/algo/utils/make_env.py", line 110, in reset
132
+ obs, info = self.env.reset(**kwargs)
133
+ File "/media/nguyen-duc-huy/E/anaconda3/envs/rl-project/lib/python3.10/site-packages/sf_examples/vizdoom/doom/wrappers/scenario_wrappers/gathering_reward_shaping.py", line 30, in reset
134
+ return self.env.reset(**kwargs)
135
+ File "/media/nguyen-duc-huy/E/anaconda3/envs/rl-project/lib/python3.10/site-packages/gymnasium/core.py", line 515, in reset
136
+ obs, info = self.env.reset(seed=seed, options=options)
137
+ File "/media/nguyen-duc-huy/E/anaconda3/envs/rl-project/lib/python3.10/site-packages/sample_factory/envs/env_wrappers.py", line 82, in reset
138
+ obs, info = self.env.reset(**kwargs)
139
+ File "/media/nguyen-duc-huy/E/anaconda3/envs/rl-project/lib/python3.10/site-packages/gymnasium/core.py", line 467, in reset
140
+ return self.env.reset(seed=seed, options=options)
141
+ File "/media/nguyen-duc-huy/E/anaconda3/envs/rl-project/lib/python3.10/site-packages/sf_examples/vizdoom/doom/wrappers/multiplayer_stats.py", line 51, in reset
142
+ return self.env.reset(**kwargs)
143
+ File "/media/nguyen-duc-huy/E/anaconda3/envs/rl-project/lib/python3.10/site-packages/sf_examples/vizdoom/doom/doom_gym.py", line 323, in reset
144
+ self._ensure_initialized()
145
+ File "/media/nguyen-duc-huy/E/anaconda3/envs/rl-project/lib/python3.10/site-packages/sf_examples/vizdoom/doom/doom_gym.py", line 274, in _ensure_initialized
146
+ self.initialize()
147
+ File "/media/nguyen-duc-huy/E/anaconda3/envs/rl-project/lib/python3.10/site-packages/sf_examples/vizdoom/doom/doom_gym.py", line 269, in initialize
148
+ self._game_init()
149
+ File "/media/nguyen-duc-huy/E/anaconda3/envs/rl-project/lib/python3.10/site-packages/sf_examples/vizdoom/doom/doom_gym.py", line 244, in _game_init
150
+ raise EnvCriticalError()
151
+ sample_factory.envs.env_utils.EnvCriticalError
152
+ [2024-08-16 15:00:37,866][19832] Unhandled exception in evt loop rollout_proc3_evt_loop
153
+ [2024-08-16 15:00:38,007][19831] Decorrelating experience for 0 frames...
154
+ [2024-08-16 15:00:38,011][19836] Decorrelating experience for 0 frames...
155
+ [2024-08-16 15:00:38,013][19837] Decorrelating experience for 0 frames...
156
+ [2024-08-16 15:00:38,073][19838] Decorrelating experience for 0 frames...
157
+ [2024-08-16 15:00:38,076][19834] Decorrelating experience for 0 frames...
158
+ [2024-08-16 15:00:38,179][19836] Decorrelating experience for 32 frames...
159
+ [2024-08-16 15:00:38,180][19837] Decorrelating experience for 32 frames...
160
+ [2024-08-16 15:00:38,224][19831] Decorrelating experience for 32 frames...
161
+ [2024-08-16 15:00:38,226][19835] Decorrelating experience for 0 frames...
162
+ [2024-08-16 15:00:38,270][19833] Decorrelating experience for 0 frames...
163
+ [2024-08-16 15:00:38,393][19838] Decorrelating experience for 32 frames...
164
+ [2024-08-16 15:00:38,396][19835] Decorrelating experience for 32 frames...
165
+ [2024-08-16 15:00:38,423][19836] Decorrelating experience for 64 frames...
166
+ [2024-08-16 15:00:38,423][19834] Decorrelating experience for 32 frames...
167
+ [2024-08-16 15:00:38,437][19833] Decorrelating experience for 32 frames...
168
+ [2024-08-16 15:00:38,634][19836] Decorrelating experience for 96 frames...
169
+ [2024-08-16 15:00:38,643][19838] Decorrelating experience for 64 frames...
170
+ [2024-08-16 15:00:38,652][19831] Decorrelating experience for 64 frames...
171
+ [2024-08-16 15:00:38,682][19833] Decorrelating experience for 64 frames...
172
+ [2024-08-16 15:00:38,682][19835] Decorrelating experience for 64 frames...
173
+ [2024-08-16 15:00:38,811][19834] Decorrelating experience for 64 frames...
174
+ [2024-08-16 15:00:38,870][19831] Decorrelating experience for 96 frames...
175
+ [2024-08-16 15:00:38,871][19833] Decorrelating experience for 96 frames...
176
+ [2024-08-16 15:00:38,880][19835] Decorrelating experience for 96 frames...
177
+ [2024-08-16 15:00:38,898][19837] Decorrelating experience for 64 frames...
178
+ [2024-08-16 15:00:38,999][19834] Decorrelating experience for 96 frames...
179
+ [2024-08-16 15:00:39,034][19838] Decorrelating experience for 96 frames...
180
+ [2024-08-16 15:00:39,229][19837] Decorrelating experience for 96 frames...
181
+ [2024-08-16 15:00:39,423][09795] Fps is (10 sec: nan, 60 sec: nan, 300 sec: nan). Total num frames: 0. Throughput: 0: nan. Samples: 0. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0)
182
+ [2024-08-16 15:00:39,424][09795] Avg episode reward: [(0, '1.092')]
183
+ [2024-08-16 15:00:39,814][19817] Signal inference workers to stop experience collection...
184
+ [2024-08-16 15:00:39,818][19830] InferenceWorker_p0-w0: stopping experience collection
185
+ [2024-08-16 15:00:41,087][19817] Signal inference workers to resume experience collection...
186
+ [2024-08-16 15:00:41,088][19830] InferenceWorker_p0-w0: resuming experience collection
187
+ [2024-08-16 15:00:43,180][19830] Updated weights for policy 0, policy_version 10 (0.0113)
188
+ [2024-08-16 15:00:44,423][09795] Fps is (10 sec: 12287.7, 60 sec: 12287.7, 300 sec: 12287.7). Total num frames: 61440. Throughput: 0: 2707.1. Samples: 13536. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
189
+ [2024-08-16 15:00:44,424][09795] Avg episode reward: [(0, '4.447')]
190
+ [2024-08-16 15:00:45,464][19830] Updated weights for policy 0, policy_version 20 (0.0008)
191
+ [2024-08-16 15:00:47,818][19830] Updated weights for policy 0, policy_version 30 (0.0009)
192
+ [2024-08-16 15:00:49,423][09795] Fps is (10 sec: 15155.2, 60 sec: 15155.2, 300 sec: 15155.2). Total num frames: 151552. Throughput: 0: 2645.4. Samples: 26454. Policy #0 lag: (min: 0.0, avg: 0.3, max: 2.0)
193
+ [2024-08-16 15:00:49,424][09795] Avg episode reward: [(0, '4.560')]
194
+ [2024-08-16 15:00:49,427][19817] Saving new best policy, reward=4.560!
195
+ [2024-08-16 15:00:49,917][19830] Updated weights for policy 0, policy_version 40 (0.0008)
196
+ [2024-08-16 15:00:52,105][19830] Updated weights for policy 0, policy_version 50 (0.0008)
197
+ [2024-08-16 15:00:53,769][09795] Heartbeat connected on Batcher_0
198
+ [2024-08-16 15:00:53,779][09795] Heartbeat connected on LearnerWorker_p0
199
+ [2024-08-16 15:00:53,781][09795] Heartbeat connected on RolloutWorker_w0
200
+ [2024-08-16 15:00:53,781][09795] Heartbeat connected on RolloutWorker_w1
201
+ [2024-08-16 15:00:53,782][09795] Heartbeat connected on InferenceWorker_p0-w0
202
+ [2024-08-16 15:00:53,782][09795] Heartbeat connected on RolloutWorker_w2
203
+ [2024-08-16 15:00:53,787][09795] Heartbeat connected on RolloutWorker_w4
204
+ [2024-08-16 15:00:53,789][09795] Heartbeat connected on RolloutWorker_w5
205
+ [2024-08-16 15:00:53,792][09795] Heartbeat connected on RolloutWorker_w6
206
+ [2024-08-16 15:00:53,804][09795] Heartbeat connected on RolloutWorker_w7
207
+ [2024-08-16 15:00:54,170][19830] Updated weights for policy 0, policy_version 60 (0.0007)
208
+ [2024-08-16 15:00:54,423][09795] Fps is (10 sec: 18841.8, 60 sec: 16657.1, 300 sec: 16657.1). Total num frames: 249856. Throughput: 0: 3682.7. Samples: 55240. Policy #0 lag: (min: 0.0, avg: 0.8, max: 1.0)
209
+ [2024-08-16 15:00:54,424][09795] Avg episode reward: [(0, '4.325')]
210
+ [2024-08-16 15:00:56,365][19830] Updated weights for policy 0, policy_version 70 (0.0007)
211
+ [2024-08-16 15:00:58,557][19830] Updated weights for policy 0, policy_version 80 (0.0008)
212
+ [2024-08-16 15:00:59,423][09795] Fps is (10 sec: 19251.3, 60 sec: 17203.2, 300 sec: 17203.2). Total num frames: 344064. Throughput: 0: 4178.0. Samples: 83560. Policy #0 lag: (min: 0.0, avg: 0.3, max: 1.0)
213
+ [2024-08-16 15:00:59,424][09795] Avg episode reward: [(0, '4.428')]
214
+ [2024-08-16 15:01:00,612][19830] Updated weights for policy 0, policy_version 90 (0.0008)
215
+ [2024-08-16 15:01:02,841][19830] Updated weights for policy 0, policy_version 100 (0.0008)
216
+ [2024-08-16 15:01:04,423][09795] Fps is (10 sec: 18841.4, 60 sec: 17530.8, 300 sec: 17530.8). Total num frames: 438272. Throughput: 0: 3926.3. Samples: 98158. Policy #0 lag: (min: 0.0, avg: 0.8, max: 1.0)
217
+ [2024-08-16 15:01:04,424][09795] Avg episode reward: [(0, '4.555')]
218
+ [2024-08-16 15:01:05,072][19830] Updated weights for policy 0, policy_version 110 (0.0009)
219
+ [2024-08-16 15:01:07,573][19830] Updated weights for policy 0, policy_version 120 (0.0009)
220
+ [2024-08-16 15:01:09,423][09795] Fps is (10 sec: 17612.6, 60 sec: 17339.7, 300 sec: 17339.7). Total num frames: 520192. Throughput: 0: 4151.1. Samples: 124534. Policy #0 lag: (min: 0.0, avg: 0.4, max: 2.0)
221
+ [2024-08-16 15:01:09,424][09795] Avg episode reward: [(0, '4.401')]
222
+ [2024-08-16 15:01:09,911][19830] Updated weights for policy 0, policy_version 130 (0.0009)
223
+ [2024-08-16 15:01:12,264][19830] Updated weights for policy 0, policy_version 140 (0.0009)
224
+ [2024-08-16 15:01:14,423][09795] Fps is (10 sec: 16793.6, 60 sec: 17320.2, 300 sec: 17320.2). Total num frames: 606208. Throughput: 0: 4290.8. Samples: 150180. Policy #0 lag: (min: 0.0, avg: 0.7, max: 1.0)
225
+ [2024-08-16 15:01:14,424][09795] Avg episode reward: [(0, '4.590')]
226
+ [2024-08-16 15:01:14,426][19817] Saving new best policy, reward=4.590!
227
+ [2024-08-16 15:01:14,726][19830] Updated weights for policy 0, policy_version 150 (0.0009)
228
+ [2024-08-16 15:01:17,050][19830] Updated weights for policy 0, policy_version 160 (0.0009)
229
+ [2024-08-16 15:01:19,279][19830] Updated weights for policy 0, policy_version 170 (0.0009)
230
+ [2024-08-16 15:01:19,423][09795] Fps is (10 sec: 17612.8, 60 sec: 17408.0, 300 sec: 17408.0). Total num frames: 696320. Throughput: 0: 4074.9. Samples: 162998. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
231
+ [2024-08-16 15:01:19,424][09795] Avg episode reward: [(0, '4.887')]
232
+ [2024-08-16 15:01:19,428][19817] Saving new best policy, reward=4.887!
233
+ [2024-08-16 15:01:21,441][19830] Updated weights for policy 0, policy_version 180 (0.0008)
234
+ [2024-08-16 15:01:23,683][19830] Updated weights for policy 0, policy_version 190 (0.0008)
235
+ [2024-08-16 15:01:24,423][09795] Fps is (10 sec: 18432.1, 60 sec: 17567.3, 300 sec: 17567.3). Total num frames: 790528. Throughput: 0: 4244.1. Samples: 190986. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
236
+ [2024-08-16 15:01:24,424][09795] Avg episode reward: [(0, '4.891')]
237
+ [2024-08-16 15:01:24,425][19817] Saving new best policy, reward=4.891!
238
+ [2024-08-16 15:01:25,941][19830] Updated weights for policy 0, policy_version 200 (0.0009)
239
+ [2024-08-16 15:01:28,119][19830] Updated weights for policy 0, policy_version 210 (0.0009)
240
+ [2024-08-16 15:01:29,423][09795] Fps is (10 sec: 18432.1, 60 sec: 17612.8, 300 sec: 17612.8). Total num frames: 880640. Throughput: 0: 4556.1. Samples: 218558. Policy #0 lag: (min: 0.0, avg: 0.7, max: 1.0)
241
+ [2024-08-16 15:01:29,424][09795] Avg episode reward: [(0, '5.945')]
242
+ [2024-08-16 15:01:29,457][19817] Saving new best policy, reward=5.945!
243
+ [2024-08-16 15:01:30,374][19830] Updated weights for policy 0, policy_version 220 (0.0009)
244
+ [2024-08-16 15:01:32,570][19830] Updated weights for policy 0, policy_version 230 (0.0009)
245
+ [2024-08-16 15:01:34,423][09795] Fps is (10 sec: 18432.0, 60 sec: 17724.5, 300 sec: 17724.5). Total num frames: 974848. Throughput: 0: 4574.5. Samples: 232306. Policy #0 lag: (min: 0.0, avg: 0.3, max: 1.0)
246
+ [2024-08-16 15:01:34,425][09795] Avg episode reward: [(0, '7.048')]
247
+ [2024-08-16 15:01:34,425][19817] Saving new best policy, reward=7.048!
248
+ [2024-08-16 15:01:34,853][19830] Updated weights for policy 0, policy_version 240 (0.0009)
249
+ [2024-08-16 15:01:37,021][19830] Updated weights for policy 0, policy_version 250 (0.0008)
250
+ [2024-08-16 15:01:39,262][19830] Updated weights for policy 0, policy_version 260 (0.0008)
251
+ [2024-08-16 15:01:39,423][09795] Fps is (10 sec: 18431.9, 60 sec: 17749.3, 300 sec: 17749.3). Total num frames: 1064960. Throughput: 0: 4550.3. Samples: 260002. Policy #0 lag: (min: 0.0, avg: 0.3, max: 1.0)
252
+ [2024-08-16 15:01:39,424][09795] Avg episode reward: [(0, '6.964')]
253
+ [2024-08-16 15:01:41,457][19830] Updated weights for policy 0, policy_version 270 (0.0008)
254
+ [2024-08-16 15:01:43,637][19830] Updated weights for policy 0, policy_version 280 (0.0009)
255
+ [2024-08-16 15:01:44,423][09795] Fps is (10 sec: 18431.9, 60 sec: 18295.5, 300 sec: 17833.3). Total num frames: 1159168. Throughput: 0: 4537.0. Samples: 287726. Policy #0 lag: (min: 0.0, avg: 0.3, max: 1.0)
256
+ [2024-08-16 15:01:44,424][09795] Avg episode reward: [(0, '9.357')]
257
+ [2024-08-16 15:01:44,425][19817] Saving new best policy, reward=9.357!
258
+ [2024-08-16 15:01:45,922][19830] Updated weights for policy 0, policy_version 290 (0.0009)
259
+ [2024-08-16 15:01:48,081][19830] Updated weights for policy 0, policy_version 300 (0.0008)
260
+ [2024-08-16 15:01:49,423][09795] Fps is (10 sec: 18432.1, 60 sec: 18295.5, 300 sec: 17846.9). Total num frames: 1249280. Throughput: 0: 4518.2. Samples: 301476. Policy #0 lag: (min: 0.0, avg: 0.3, max: 1.0)
261
+ [2024-08-16 15:01:49,424][09795] Avg episode reward: [(0, '7.852')]
262
+ [2024-08-16 15:01:50,349][19830] Updated weights for policy 0, policy_version 310 (0.0008)
263
+ [2024-08-16 15:01:52,544][19830] Updated weights for policy 0, policy_version 320 (0.0008)
264
+ [2024-08-16 15:01:54,423][09795] Fps is (10 sec: 18432.0, 60 sec: 18227.2, 300 sec: 17913.2). Total num frames: 1343488. Throughput: 0: 4549.2. Samples: 329246. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
265
+ [2024-08-16 15:01:54,424][09795] Avg episode reward: [(0, '9.561')]
266
+ [2024-08-16 15:01:54,425][19817] Saving new best policy, reward=9.561!
267
+ [2024-08-16 15:01:54,789][19830] Updated weights for policy 0, policy_version 330 (0.0008)
268
+ [2024-08-16 15:01:56,970][19830] Updated weights for policy 0, policy_version 340 (0.0009)
269
+ [2024-08-16 15:01:59,148][19830] Updated weights for policy 0, policy_version 350 (0.0009)
270
+ [2024-08-16 15:01:59,423][09795] Fps is (10 sec: 18432.0, 60 sec: 18158.9, 300 sec: 17920.0). Total num frames: 1433600. Throughput: 0: 4596.9. Samples: 357040. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
271
+ [2024-08-16 15:01:59,424][09795] Avg episode reward: [(0, '10.780')]
272
+ [2024-08-16 15:01:59,428][19817] Saving new best policy, reward=10.780!
273
+ [2024-08-16 15:02:01,442][19830] Updated weights for policy 0, policy_version 360 (0.0008)
274
+ [2024-08-16 15:02:03,728][19830] Updated weights for policy 0, policy_version 370 (0.0009)
275
+ [2024-08-16 15:02:04,423][09795] Fps is (10 sec: 18021.9, 60 sec: 18090.6, 300 sec: 17926.0). Total num frames: 1523712. Throughput: 0: 4618.8. Samples: 370844. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
276
+ [2024-08-16 15:02:04,424][09795] Avg episode reward: [(0, '10.450')]
277
+ [2024-08-16 15:02:06,271][19830] Updated weights for policy 0, policy_version 380 (0.0009)
278
+ [2024-08-16 15:02:08,626][19830] Updated weights for policy 0, policy_version 390 (0.0009)
279
+ [2024-08-16 15:02:09,423][09795] Fps is (10 sec: 17612.7, 60 sec: 18158.9, 300 sec: 17885.9). Total num frames: 1609728. Throughput: 0: 4559.1. Samples: 396144. Policy #0 lag: (min: 0.0, avg: 0.7, max: 1.0)
280
+ [2024-08-16 15:02:09,424][09795] Avg episode reward: [(0, '11.546')]
281
+ [2024-08-16 15:02:09,427][19817] Saving new best policy, reward=11.546!
282
+ [2024-08-16 15:02:11,006][19830] Updated weights for policy 0, policy_version 400 (0.0009)
283
+ [2024-08-16 15:02:13,467][19830] Updated weights for policy 0, policy_version 410 (0.0009)
284
+ [2024-08-16 15:02:14,423][09795] Fps is (10 sec: 16794.0, 60 sec: 18090.7, 300 sec: 17806.8). Total num frames: 1691648. Throughput: 0: 4514.2. Samples: 421696. Policy #0 lag: (min: 0.0, avg: 0.3, max: 1.0)
285
+ [2024-08-16 15:02:14,424][09795] Avg episode reward: [(0, '13.300')]
286
+ [2024-08-16 15:02:14,425][19817] Saving new best policy, reward=13.300!
287
+ [2024-08-16 15:02:16,030][19830] Updated weights for policy 0, policy_version 420 (0.0010)
288
+ [2024-08-16 15:02:18,673][19830] Updated weights for policy 0, policy_version 430 (0.0009)
289
+ [2024-08-16 15:02:19,423][09795] Fps is (10 sec: 16384.2, 60 sec: 17954.2, 300 sec: 17735.7). Total num frames: 1773568. Throughput: 0: 4463.8. Samples: 433178. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
290
+ [2024-08-16 15:02:19,424][09795] Avg episode reward: [(0, '10.660')]
291
+ [2024-08-16 15:02:21,021][19830] Updated weights for policy 0, policy_version 440 (0.0009)
292
+ [2024-08-16 15:02:23,368][19830] Updated weights for policy 0, policy_version 450 (0.0008)
293
+ [2024-08-16 15:02:24,423][09795] Fps is (10 sec: 16793.6, 60 sec: 17817.6, 300 sec: 17710.3). Total num frames: 1859584. Throughput: 0: 4417.4. Samples: 458786. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
294
+ [2024-08-16 15:02:24,424][09795] Avg episode reward: [(0, '15.219')]
295
+ [2024-08-16 15:02:24,465][19817] Saving new best policy, reward=15.219!
296
+ [2024-08-16 15:02:25,656][19830] Updated weights for policy 0, policy_version 460 (0.0010)
297
+ [2024-08-16 15:02:28,006][19830] Updated weights for policy 0, policy_version 470 (0.0009)
298
+ [2024-08-16 15:02:29,423][09795] Fps is (10 sec: 17612.6, 60 sec: 17817.6, 300 sec: 17724.5). Total num frames: 1949696. Throughput: 0: 4392.5. Samples: 485388. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
299
+ [2024-08-16 15:02:29,424][09795] Avg episode reward: [(0, '15.121')]
300
+ [2024-08-16 15:02:29,428][19817] Saving /media/nguyen-duc-huy/E/Code/Deep_RL/train_dir/default_experiment/checkpoint_p0/checkpoint_000000476_1949696.pth...
301
+ [2024-08-16 15:02:30,305][19830] Updated weights for policy 0, policy_version 480 (0.0009)
302
+ [2024-08-16 15:02:32,595][19830] Updated weights for policy 0, policy_version 490 (0.0009)
303
+ [2024-08-16 15:02:34,423][09795] Fps is (10 sec: 17613.0, 60 sec: 17681.1, 300 sec: 17701.9). Total num frames: 2035712. Throughput: 0: 4380.4. Samples: 498594. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
304
+ [2024-08-16 15:02:34,424][09795] Avg episode reward: [(0, '17.719')]
305
+ [2024-08-16 15:02:34,425][19817] Saving new best policy, reward=17.719!
306
+ [2024-08-16 15:02:34,965][19830] Updated weights for policy 0, policy_version 500 (0.0009)
307
+ [2024-08-16 15:02:37,288][19830] Updated weights for policy 0, policy_version 510 (0.0009)
308
+ [2024-08-16 15:02:39,423][09795] Fps is (10 sec: 17203.4, 60 sec: 17612.8, 300 sec: 17681.1). Total num frames: 2121728. Throughput: 0: 4347.0. Samples: 524862. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
309
+ [2024-08-16 15:02:39,424][09795] Avg episode reward: [(0, '16.486')]
310
+ [2024-08-16 15:02:39,678][19830] Updated weights for policy 0, policy_version 520 (0.0009)
311
+ [2024-08-16 15:02:41,968][19830] Updated weights for policy 0, policy_version 530 (0.0009)
312
+ [2024-08-16 15:02:44,337][19830] Updated weights for policy 0, policy_version 540 (0.0009)
313
+ [2024-08-16 15:02:44,423][09795] Fps is (10 sec: 17612.7, 60 sec: 17544.5, 300 sec: 17694.7). Total num frames: 2211840. Throughput: 0: 4313.9. Samples: 551164. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
314
+ [2024-08-16 15:02:44,424][09795] Avg episode reward: [(0, '15.403')]
315
+ [2024-08-16 15:02:46,708][19830] Updated weights for policy 0, policy_version 550 (0.0009)
316
+ [2024-08-16 15:02:49,383][19830] Updated weights for policy 0, policy_version 560 (0.0010)
317
+ [2024-08-16 15:02:49,423][09795] Fps is (10 sec: 17203.1, 60 sec: 17408.0, 300 sec: 17644.3). Total num frames: 2293760. Throughput: 0: 4293.9. Samples: 564066. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
318
+ [2024-08-16 15:02:49,424][09795] Avg episode reward: [(0, '15.907')]
319
+ [2024-08-16 15:02:52,067][19830] Updated weights for policy 0, policy_version 570 (0.0010)
320
+ [2024-08-16 15:02:54,365][19830] Updated weights for policy 0, policy_version 580 (0.0008)
321
+ [2024-08-16 15:02:54,423][09795] Fps is (10 sec: 16384.0, 60 sec: 17203.2, 300 sec: 17597.6). Total num frames: 2375680. Throughput: 0: 4246.0. Samples: 587212. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
322
+ [2024-08-16 15:02:54,424][09795] Avg episode reward: [(0, '19.519')]
323
+ [2024-08-16 15:02:54,425][19817] Saving new best policy, reward=19.519!
324
+ [2024-08-16 15:02:56,821][19830] Updated weights for policy 0, policy_version 590 (0.0009)
325
+ [2024-08-16 15:02:59,423][09795] Fps is (10 sec: 15974.3, 60 sec: 16998.4, 300 sec: 17525.0). Total num frames: 2453504. Throughput: 0: 4218.4. Samples: 611524. Policy #0 lag: (min: 0.0, avg: 0.7, max: 1.0)
326
+ [2024-08-16 15:02:59,424][09795] Avg episode reward: [(0, '18.098')]
327
+ [2024-08-16 15:02:59,662][19830] Updated weights for policy 0, policy_version 600 (0.0010)
328
+ [2024-08-16 15:03:02,145][19830] Updated weights for policy 0, policy_version 610 (0.0009)
329
+ [2024-08-16 15:03:04,423][09795] Fps is (10 sec: 15564.5, 60 sec: 16793.6, 300 sec: 17457.4). Total num frames: 2531328. Throughput: 0: 4236.4. Samples: 623818. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
330
+ [2024-08-16 15:03:04,424][09795] Avg episode reward: [(0, '16.211')]
331
+ [2024-08-16 15:03:04,946][19830] Updated weights for policy 0, policy_version 620 (0.0010)
332
+ [2024-08-16 15:03:07,359][19830] Updated weights for policy 0, policy_version 630 (0.0010)
333
+ [2024-08-16 15:03:09,423][09795] Fps is (10 sec: 15564.8, 60 sec: 16657.1, 300 sec: 17394.3). Total num frames: 2609152. Throughput: 0: 4190.5. Samples: 647360. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
334
+ [2024-08-16 15:03:09,424][09795] Avg episode reward: [(0, '16.607')]
335
+ [2024-08-16 15:03:09,991][19830] Updated weights for policy 0, policy_version 640 (0.0010)
336
+ [2024-08-16 15:03:13,072][19830] Updated weights for policy 0, policy_version 650 (0.0011)
337
+ [2024-08-16 15:03:14,423][09795] Fps is (10 sec: 15155.6, 60 sec: 16520.6, 300 sec: 17308.9). Total num frames: 2682880. Throughput: 0: 4073.9. Samples: 668714. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
338
+ [2024-08-16 15:03:14,424][09795] Avg episode reward: [(0, '18.533')]
339
+ [2024-08-16 15:03:15,651][19830] Updated weights for policy 0, policy_version 660 (0.0010)
340
+ [2024-08-16 15:03:18,195][19830] Updated weights for policy 0, policy_version 670 (0.0010)
341
+ [2024-08-16 15:03:19,423][09795] Fps is (10 sec: 15155.2, 60 sec: 16452.2, 300 sec: 17254.4). Total num frames: 2760704. Throughput: 0: 4053.6. Samples: 681006. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
342
+ [2024-08-16 15:03:19,424][09795] Avg episode reward: [(0, '20.754')]
343
+ [2024-08-16 15:03:19,429][19817] Saving new best policy, reward=20.754!
344
+ [2024-08-16 15:03:21,009][19830] Updated weights for policy 0, policy_version 680 (0.0010)
345
+ [2024-08-16 15:03:23,683][19830] Updated weights for policy 0, policy_version 690 (0.0011)
346
+ [2024-08-16 15:03:24,423][09795] Fps is (10 sec: 15154.9, 60 sec: 16247.4, 300 sec: 17178.4). Total num frames: 2834432. Throughput: 0: 3975.9. Samples: 703780. Policy #0 lag: (min: 0.0, avg: 0.4, max: 2.0)
347
+ [2024-08-16 15:03:24,425][09795] Avg episode reward: [(0, '22.080')]
348
+ [2024-08-16 15:03:24,426][19817] Saving new best policy, reward=22.080!
349
+ [2024-08-16 15:03:26,418][19830] Updated weights for policy 0, policy_version 700 (0.0010)
350
+ [2024-08-16 15:03:29,121][19830] Updated weights for policy 0, policy_version 710 (0.0009)
351
+ [2024-08-16 15:03:29,423][09795] Fps is (10 sec: 15154.8, 60 sec: 16042.6, 300 sec: 17130.9). Total num frames: 2912256. Throughput: 0: 3893.7. Samples: 726382. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
352
+ [2024-08-16 15:03:29,425][09795] Avg episode reward: [(0, '20.974')]
353
+ [2024-08-16 15:03:31,752][19830] Updated weights for policy 0, policy_version 720 (0.0009)
354
+ [2024-08-16 15:03:34,424][09795] Fps is (10 sec: 15153.4, 60 sec: 15837.5, 300 sec: 17062.6). Total num frames: 2985984. Throughput: 0: 3860.5. Samples: 737792. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
355
+ [2024-08-16 15:03:34,426][09795] Avg episode reward: [(0, '21.284')]
356
+ [2024-08-16 15:03:34,553][19830] Updated weights for policy 0, policy_version 730 (0.0010)
357
+ [2024-08-16 15:03:37,150][19830] Updated weights for policy 0, policy_version 740 (0.0010)
358
+ [2024-08-16 15:03:39,423][09795] Fps is (10 sec: 15154.8, 60 sec: 15701.2, 300 sec: 17021.1). Total num frames: 3063808. Throughput: 0: 3855.2. Samples: 760696. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
359
+ [2024-08-16 15:03:39,425][09795] Avg episode reward: [(0, '21.944')]
360
+ [2024-08-16 15:03:39,844][19830] Updated weights for policy 0, policy_version 750 (0.0010)
361
+ [2024-08-16 15:03:42,687][19830] Updated weights for policy 0, policy_version 760 (0.0011)
362
+ [2024-08-16 15:03:44,423][09795] Fps is (10 sec: 15157.1, 60 sec: 15428.2, 300 sec: 16959.6). Total num frames: 3137536. Throughput: 0: 3809.6. Samples: 782956. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
363
+ [2024-08-16 15:03:44,424][09795] Avg episode reward: [(0, '25.046')]
364
+ [2024-08-16 15:03:44,425][19817] Saving new best policy, reward=25.046!
365
+ [2024-08-16 15:03:45,540][19830] Updated weights for policy 0, policy_version 770 (0.0010)
366
+ [2024-08-16 15:03:48,303][19830] Updated weights for policy 0, policy_version 780 (0.0010)
367
+ [2024-08-16 15:03:49,423][09795] Fps is (10 sec: 14746.4, 60 sec: 15291.7, 300 sec: 16901.4). Total num frames: 3211264. Throughput: 0: 3763.1. Samples: 793156. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
368
+ [2024-08-16 15:03:49,424][09795] Avg episode reward: [(0, '23.080')]
369
+ [2024-08-16 15:03:50,601][19830] Updated weights for policy 0, policy_version 790 (0.0009)
370
+ [2024-08-16 15:03:52,885][19830] Updated weights for policy 0, policy_version 800 (0.0009)
371
+ [2024-08-16 15:03:54,423][09795] Fps is (10 sec: 16384.0, 60 sec: 15428.2, 300 sec: 16930.1). Total num frames: 3301376. Throughput: 0: 3822.4. Samples: 819368. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
372
+ [2024-08-16 15:03:54,424][09795] Avg episode reward: [(0, '24.139')]
373
+ [2024-08-16 15:03:55,423][19830] Updated weights for policy 0, policy_version 810 (0.0010)
374
+ [2024-08-16 15:03:58,170][19830] Updated weights for policy 0, policy_version 820 (0.0011)
375
+ [2024-08-16 15:03:59,423][09795] Fps is (10 sec: 16793.2, 60 sec: 15428.2, 300 sec: 16896.0). Total num frames: 3379200. Throughput: 0: 3869.4. Samples: 842838. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
376
+ [2024-08-16 15:03:59,425][09795] Avg episode reward: [(0, '20.764')]
377
+ [2024-08-16 15:04:00,629][19830] Updated weights for policy 0, policy_version 830 (0.0010)
378
+ [2024-08-16 15:04:02,983][19830] Updated weights for policy 0, policy_version 840 (0.0009)
379
+ [2024-08-16 15:04:04,423][09795] Fps is (10 sec: 15974.5, 60 sec: 15496.6, 300 sec: 16883.5). Total num frames: 3461120. Throughput: 0: 3880.0. Samples: 855606. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
380
+ [2024-08-16 15:04:04,424][09795] Avg episode reward: [(0, '19.982')]
381
+ [2024-08-16 15:04:05,383][19830] Updated weights for policy 0, policy_version 850 (0.0009)
382
+ [2024-08-16 15:04:07,772][19830] Updated weights for policy 0, policy_version 860 (0.0009)
383
+ [2024-08-16 15:04:09,423][09795] Fps is (10 sec: 16793.2, 60 sec: 15632.9, 300 sec: 16891.1). Total num frames: 3547136. Throughput: 0: 3942.0. Samples: 881170. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
384
+ [2024-08-16 15:04:09,425][09795] Avg episode reward: [(0, '22.320')]
385
+ [2024-08-16 15:04:10,261][19830] Updated weights for policy 0, policy_version 870 (0.0010)
386
+ [2024-08-16 15:04:12,692][19830] Updated weights for policy 0, policy_version 880 (0.0009)
387
+ [2024-08-16 15:04:14,423][09795] Fps is (10 sec: 16793.5, 60 sec: 15769.5, 300 sec: 16879.3). Total num frames: 3629056. Throughput: 0: 3994.8. Samples: 906146. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
388
+ [2024-08-16 15:04:14,425][09795] Avg episode reward: [(0, '21.940')]
389
+ [2024-08-16 15:04:15,376][19830] Updated weights for policy 0, policy_version 890 (0.0010)
390
+ [2024-08-16 15:04:18,126][19830] Updated weights for policy 0, policy_version 900 (0.0010)
391
+ [2024-08-16 15:04:19,423][09795] Fps is (10 sec: 15975.2, 60 sec: 15769.6, 300 sec: 16849.5). Total num frames: 3706880. Throughput: 0: 3986.6. Samples: 917182. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
392
+ [2024-08-16 15:04:19,424][09795] Avg episode reward: [(0, '23.776')]
393
+ [2024-08-16 15:04:20,599][19830] Updated weights for policy 0, policy_version 910 (0.0010)
394
+ [2024-08-16 15:04:23,316][19830] Updated weights for policy 0, policy_version 920 (0.0010)
395
+ [2024-08-16 15:04:24,423][09795] Fps is (10 sec: 15565.0, 60 sec: 15837.9, 300 sec: 16820.9). Total num frames: 3784704. Throughput: 0: 3997.4. Samples: 940576. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
396
+ [2024-08-16 15:04:24,424][09795] Avg episode reward: [(0, '23.407')]
397
+ [2024-08-16 15:04:25,887][19830] Updated weights for policy 0, policy_version 930 (0.0010)
398
+ [2024-08-16 15:04:28,613][19830] Updated weights for policy 0, policy_version 940 (0.0009)
399
+ [2024-08-16 15:04:29,423][09795] Fps is (10 sec: 15564.8, 60 sec: 15838.0, 300 sec: 16793.6). Total num frames: 3862528. Throughput: 0: 4019.9. Samples: 963852. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
400
+ [2024-08-16 15:04:29,424][09795] Avg episode reward: [(0, '19.884')]
401
+ [2024-08-16 15:04:29,429][19817] Saving /media/nguyen-duc-huy/E/Code/Deep_RL/train_dir/default_experiment/checkpoint_p0/checkpoint_000000943_3862528.pth...
402
+ [2024-08-16 15:04:31,179][19830] Updated weights for policy 0, policy_version 950 (0.0010)
403
+ [2024-08-16 15:04:33,747][19830] Updated weights for policy 0, policy_version 960 (0.0010)
404
+ [2024-08-16 15:04:34,423][09795] Fps is (10 sec: 15564.9, 60 sec: 15906.5, 300 sec: 16767.5). Total num frames: 3940352. Throughput: 0: 4055.8. Samples: 975668. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
405
+ [2024-08-16 15:04:34,424][09795] Avg episode reward: [(0, '20.892')]
406
+ [2024-08-16 15:04:36,281][19830] Updated weights for policy 0, policy_version 970 (0.0009)
407
+ [2024-08-16 15:04:38,262][19817] Stopping Batcher_0...
408
+ [2024-08-16 15:04:38,263][19817] Loop batcher_evt_loop terminating...
409
+ [2024-08-16 15:04:38,263][19817] Saving /media/nguyen-duc-huy/E/Code/Deep_RL/train_dir/default_experiment/checkpoint_p0/checkpoint_000000978_4005888.pth...
410
+ [2024-08-16 15:04:38,267][09795] Component Batcher_0 stopped!
411
+ [2024-08-16 15:04:38,270][09795] Component RolloutWorker_w3 process died already! Don't wait for it.
412
+ [2024-08-16 15:04:38,276][19835] Stopping RolloutWorker_w2...
413
+ [2024-08-16 15:04:38,276][19836] Stopping RolloutWorker_w6...
414
+ [2024-08-16 15:04:38,276][19831] Stopping RolloutWorker_w0...
415
+ [2024-08-16 15:04:38,276][19836] Loop rollout_proc6_evt_loop terminating...
416
+ [2024-08-16 15:04:38,277][19838] Stopping RolloutWorker_w5...
417
+ [2024-08-16 15:04:38,277][19831] Loop rollout_proc0_evt_loop terminating...
418
+ [2024-08-16 15:04:38,277][19835] Loop rollout_proc2_evt_loop terminating...
419
+ [2024-08-16 15:04:38,277][19838] Loop rollout_proc5_evt_loop terminating...
420
+ [2024-08-16 15:04:38,277][19837] Stopping RolloutWorker_w7...
421
+ [2024-08-16 15:04:38,278][19837] Loop rollout_proc7_evt_loop terminating...
422
+ [2024-08-16 15:04:38,276][09795] Component RolloutWorker_w2 stopped!
423
+ [2024-08-16 15:04:38,280][19834] Stopping RolloutWorker_w4...
424
+ [2024-08-16 15:04:38,282][19833] Stopping RolloutWorker_w1...
425
+ [2024-08-16 15:04:38,282][19834] Loop rollout_proc4_evt_loop terminating...
426
+ [2024-08-16 15:04:38,282][19833] Loop rollout_proc1_evt_loop terminating...
427
+ [2024-08-16 15:04:38,280][09795] Component RolloutWorker_w6 stopped!
428
+ [2024-08-16 15:04:38,284][19830] Weights refcount: 2 0
429
+ [2024-08-16 15:04:38,284][09795] Component RolloutWorker_w0 stopped!
430
+ [2024-08-16 15:04:38,285][19830] Stopping InferenceWorker_p0-w0...
431
+ [2024-08-16 15:04:38,286][19830] Loop inference_proc0-0_evt_loop terminating...
432
+ [2024-08-16 15:04:38,285][09795] Component RolloutWorker_w5 stopped!
433
+ [2024-08-16 15:04:38,288][09795] Component RolloutWorker_w7 stopped!
434
+ [2024-08-16 15:04:38,290][09795] Component RolloutWorker_w4 stopped!
435
+ [2024-08-16 15:04:38,293][09795] Component RolloutWorker_w1 stopped!
436
+ [2024-08-16 15:04:38,295][09795] Component InferenceWorker_p0-w0 stopped!
437
+ [2024-08-16 15:04:38,333][19817] Removing /media/nguyen-duc-huy/E/Code/Deep_RL/train_dir/default_experiment/checkpoint_p0/checkpoint_000000476_1949696.pth
438
+ [2024-08-16 15:04:38,341][19817] Saving /media/nguyen-duc-huy/E/Code/Deep_RL/train_dir/default_experiment/checkpoint_p0/checkpoint_000000978_4005888.pth...
439
+ [2024-08-16 15:04:38,422][19817] Stopping LearnerWorker_p0...
440
+ [2024-08-16 15:04:38,423][19817] Loop learner_proc0_evt_loop terminating...
441
+ [2024-08-16 15:04:38,423][09795] Component LearnerWorker_p0 stopped!
442
+ [2024-08-16 15:04:38,425][09795] Waiting for process learner_proc0 to stop...
443
+ [2024-08-16 15:04:39,321][09795] Waiting for process inference_proc0-0 to join...
444
+ [2024-08-16 15:04:39,322][09795] Waiting for process rollout_proc0 to join...
445
+ [2024-08-16 15:04:39,322][09795] Waiting for process rollout_proc1 to join...
446
+ [2024-08-16 15:04:39,323][09795] Waiting for process rollout_proc2 to join...
447
+ [2024-08-16 15:04:39,323][09795] Waiting for process rollout_proc3 to join...
448
+ [2024-08-16 15:04:39,324][09795] Waiting for process rollout_proc4 to join...
449
+ [2024-08-16 15:04:39,324][09795] Waiting for process rollout_proc5 to join...
450
+ [2024-08-16 15:04:39,324][09795] Waiting for process rollout_proc6 to join...
451
+ [2024-08-16 15:04:39,325][09795] Waiting for process rollout_proc7 to join...
452
+ [2024-08-16 15:04:39,325][09795] Batcher 0 profile tree view:
453
+ batching: 12.0359, releasing_batches: 0.0294
454
+ [2024-08-16 15:04:39,325][09795] InferenceWorker_p0-w0 profile tree view:
455
+ wait_policy: 0.0000
456
+ wait_policy_total: 3.0779
457
+ update_model: 3.7110
458
+ weight_update: 0.0010
459
+ one_step: 0.0030
460
+ handle_policy_step: 222.3845
461
+ deserialize: 8.3652, stack: 1.3086, obs_to_device_normalize: 54.2507, forward: 114.7561, send_messages: 10.5792
462
+ prepare_outputs: 24.1736
463
+ to_cpu: 14.5914
464
+ [2024-08-16 15:04:39,326][09795] Learner 0 profile tree view:
465
+ misc: 0.0043, prepare_batch: 12.4152
466
+ train: 39.1134
467
+ epoch_init: 0.0042, minibatch_init: 0.0059, losses_postprocess: 0.2538, kl_divergence: 0.2299, after_optimizer: 19.6184
468
+ calculate_losses: 13.0556
469
+ losses_init: 0.0022, forward_head: 0.8085, bptt_initial: 9.7676, tail: 0.5032, advantages_returns: 0.1281, losses: 0.8480
470
+ bptt: 0.8324
471
+ bptt_forward_core: 0.7901
472
+ update: 5.5965
473
+ clip: 0.6016
474
+ [2024-08-16 15:04:39,326][09795] RolloutWorker_w0 profile tree view:
475
+ wait_for_trajectories: 0.1335, enqueue_policy_requests: 8.5325, env_step: 100.0188, overhead: 11.2157, complete_rollouts: 0.2483
476
+ save_policy_outputs: 8.6007
477
+ split_output_tensors: 4.1162
478
+ [2024-08-16 15:04:39,326][09795] RolloutWorker_w7 profile tree view:
479
+ wait_for_trajectories: 0.1288, enqueue_policy_requests: 8.5215, env_step: 100.0412, overhead: 11.4728, complete_rollouts: 0.2583
480
+ save_policy_outputs: 8.5721
481
+ split_output_tensors: 4.0914
482
+ [2024-08-16 15:04:39,327][09795] Loop Runner_EvtLoop terminating...
483
+ [2024-08-16 15:04:39,327][09795] Runner profile tree view:
484
+ main_loop: 245.5234
485
+ [2024-08-16 15:04:39,327][09795] Collected {0: 4005888}, FPS: 16315.7
486
+ [2024-08-16 15:07:42,139][09795] Loading existing experiment configuration from /media/nguyen-duc-huy/E/Code/Deep_RL/train_dir/default_experiment/config.json
487
+ [2024-08-16 15:07:42,140][09795] Overriding arg 'num_workers' with value 1 passed from command line
488
+ [2024-08-16 15:07:42,140][09795] Adding new argument 'no_render'=True that is not in the saved config file!
489
+ [2024-08-16 15:07:42,141][09795] Adding new argument 'save_video'=True that is not in the saved config file!
490
+ [2024-08-16 15:07:42,141][09795] Adding new argument 'video_frames'=1000000000.0 that is not in the saved config file!
491
+ [2024-08-16 15:07:42,141][09795] Adding new argument 'video_name'=None that is not in the saved config file!
492
+ [2024-08-16 15:07:42,141][09795] Adding new argument 'max_num_frames'=1000000000.0 that is not in the saved config file!
493
+ [2024-08-16 15:07:42,142][09795] Adding new argument 'max_num_episodes'=10 that is not in the saved config file!
494
+ [2024-08-16 15:07:42,142][09795] Adding new argument 'push_to_hub'=False that is not in the saved config file!
495
+ [2024-08-16 15:07:42,142][09795] Adding new argument 'hf_repository'=None that is not in the saved config file!
496
+ [2024-08-16 15:07:42,143][09795] Adding new argument 'policy_index'=0 that is not in the saved config file!
497
+ [2024-08-16 15:07:42,143][09795] Adding new argument 'eval_deterministic'=False that is not in the saved config file!
498
+ [2024-08-16 15:07:42,144][09795] Adding new argument 'train_script'=None that is not in the saved config file!
499
+ [2024-08-16 15:07:42,144][09795] Adding new argument 'enjoy_script'=None that is not in the saved config file!
500
+ [2024-08-16 15:07:42,144][09795] Using frameskip 1 and render_action_repeat=4 for evaluation
501
+ [2024-08-16 15:07:42,162][09795] Doom resolution: 160x120, resize resolution: (128, 72)
502
+ [2024-08-16 15:07:42,164][09795] RunningMeanStd input shape: (3, 72, 128)
503
+ [2024-08-16 15:07:42,165][09795] RunningMeanStd input shape: (1,)
504
+ [2024-08-16 15:07:42,175][09795] ConvEncoder: input_channels=3
505
+ [2024-08-16 15:07:42,252][09795] Conv encoder output size: 512
506
+ [2024-08-16 15:07:42,253][09795] Policy head output size: 512
507
+ [2024-08-16 15:07:43,859][09795] Loading state from checkpoint /media/nguyen-duc-huy/E/Code/Deep_RL/train_dir/default_experiment/checkpoint_p0/checkpoint_000000978_4005888.pth...
508
+ [2024-08-16 15:07:44,321][09795] Num frames 100...
509
+ [2024-08-16 15:07:44,402][09795] Num frames 200...
510
+ [2024-08-16 15:07:44,485][09795] Num frames 300...
511
+ [2024-08-16 15:07:44,564][09795] Num frames 400...
512
+ [2024-08-16 15:07:44,642][09795] Num frames 500...
513
+ [2024-08-16 15:07:44,720][09795] Num frames 600...
514
+ [2024-08-16 15:07:44,820][09795] Num frames 700...
515
+ [2024-08-16 15:07:44,906][09795] Num frames 800...
516
+ [2024-08-16 15:07:44,991][09795] Num frames 900...
517
+ [2024-08-16 15:07:45,073][09795] Num frames 1000...
518
+ [2024-08-16 15:07:45,157][09795] Num frames 1100...
519
+ [2024-08-16 15:07:45,242][09795] Num frames 1200...
520
+ [2024-08-16 15:07:45,343][09795] Avg episode rewards: #0: 26.480, true rewards: #0: 12.480
521
+ [2024-08-16 15:07:45,344][09795] Avg episode reward: 26.480, avg true_objective: 12.480
522
+ [2024-08-16 15:07:45,388][09795] Num frames 1300...
523
+ [2024-08-16 15:07:45,468][09795] Num frames 1400...
524
+ [2024-08-16 15:07:45,549][09795] Num frames 1500...
525
+ [2024-08-16 15:07:45,630][09795] Num frames 1600...
526
+ [2024-08-16 15:07:45,707][09795] Num frames 1700...
527
+ [2024-08-16 15:07:45,786][09795] Num frames 1800...
528
+ [2024-08-16 15:07:45,866][09795] Num frames 1900...
529
+ [2024-08-16 15:07:45,948][09795] Num frames 2000...
530
+ [2024-08-16 15:07:46,029][09795] Num frames 2100...
531
+ [2024-08-16 15:07:46,109][09795] Num frames 2200...
532
+ [2024-08-16 15:07:46,185][09795] Num frames 2300...
533
+ [2024-08-16 15:07:46,264][09795] Num frames 2400...
534
+ [2024-08-16 15:07:46,345][09795] Num frames 2500...
535
+ [2024-08-16 15:07:46,426][09795] Num frames 2600...
536
+ [2024-08-16 15:07:46,507][09795] Num frames 2700...
537
+ [2024-08-16 15:07:46,586][09795] Num frames 2800...
538
+ [2024-08-16 15:07:46,665][09795] Num frames 2900...
539
+ [2024-08-16 15:07:46,756][09795] Avg episode rewards: #0: 30.720, true rewards: #0: 14.720
540
+ [2024-08-16 15:07:46,757][09795] Avg episode reward: 30.720, avg true_objective: 14.720
541
+ [2024-08-16 15:07:46,807][09795] Num frames 3000...
542
+ [2024-08-16 15:07:46,885][09795] Num frames 3100...
543
+ [2024-08-16 15:07:46,963][09795] Num frames 3200...
544
+ [2024-08-16 15:07:47,037][09795] Num frames 3300...
545
+ [2024-08-16 15:07:47,115][09795] Num frames 3400...
546
+ [2024-08-16 15:07:47,193][09795] Num frames 3500...
547
+ [2024-08-16 15:07:47,271][09795] Num frames 3600...
548
+ [2024-08-16 15:07:47,336][09795] Avg episode rewards: #0: 24.053, true rewards: #0: 12.053
549
+ [2024-08-16 15:07:47,337][09795] Avg episode reward: 24.053, avg true_objective: 12.053
550
+ [2024-08-16 15:07:47,400][09795] Num frames 3700...
551
+ [2024-08-16 15:07:47,476][09795] Num frames 3800...
552
+ [2024-08-16 15:07:47,551][09795] Num frames 3900...
553
+ [2024-08-16 15:07:47,632][09795] Num frames 4000...
554
+ [2024-08-16 15:07:47,708][09795] Num frames 4100...
555
+ [2024-08-16 15:07:47,783][09795] Num frames 4200...
556
+ [2024-08-16 15:07:47,859][09795] Num frames 4300...
557
+ [2024-08-16 15:07:47,938][09795] Num frames 4400...
558
+ [2024-08-16 15:07:48,017][09795] Num frames 4500...
559
+ [2024-08-16 15:07:48,094][09795] Num frames 4600...
560
+ [2024-08-16 15:07:48,168][09795] Num frames 4700...
561
+ [2024-08-16 15:07:48,244][09795] Num frames 4800...
562
+ [2024-08-16 15:07:48,319][09795] Num frames 4900...
563
+ [2024-08-16 15:07:48,395][09795] Num frames 5000...
564
+ [2024-08-16 15:07:48,515][09795] Avg episode rewards: #0: 27.220, true rewards: #0: 12.720
565
+ [2024-08-16 15:07:48,516][09795] Avg episode reward: 27.220, avg true_objective: 12.720
566
+ [2024-08-16 15:07:48,526][09795] Num frames 5100...
567
+ [2024-08-16 15:07:48,600][09795] Num frames 5200...
568
+ [2024-08-16 15:07:48,675][09795] Num frames 5300...
569
+ [2024-08-16 15:07:48,751][09795] Num frames 5400...
570
+ [2024-08-16 15:07:48,830][09795] Num frames 5500...
571
+ [2024-08-16 15:07:48,911][09795] Num frames 5600...
572
+ [2024-08-16 15:07:48,988][09795] Num frames 5700...
573
+ [2024-08-16 15:07:49,067][09795] Num frames 5800...
574
+ [2024-08-16 15:07:49,142][09795] Num frames 5900...
575
+ [2024-08-16 15:07:49,221][09795] Num frames 6000...
576
+ [2024-08-16 15:07:49,300][09795] Num frames 6100...
577
+ [2024-08-16 15:07:49,380][09795] Num frames 6200...
578
+ [2024-08-16 15:07:49,459][09795] Num frames 6300...
579
+ [2024-08-16 15:07:49,541][09795] Num frames 6400...
580
+ [2024-08-16 15:07:49,621][09795] Num frames 6500...
581
+ [2024-08-16 15:07:49,700][09795] Num frames 6600...
582
+ [2024-08-16 15:07:49,779][09795] Num frames 6700...
583
+ [2024-08-16 15:07:49,860][09795] Num frames 6800...
584
+ [2024-08-16 15:07:49,939][09795] Num frames 6900...
585
+ [2024-08-16 15:07:50,018][09795] Num frames 7000...
586
+ [2024-08-16 15:07:50,095][09795] Num frames 7100...
587
+ [2024-08-16 15:07:50,233][09795] Avg episode rewards: #0: 33.176, true rewards: #0: 14.376
588
+ [2024-08-16 15:07:50,234][09795] Avg episode reward: 33.176, avg true_objective: 14.376
589
+ [2024-08-16 15:07:50,245][09795] Num frames 7200...
590
+ [2024-08-16 15:07:50,332][09795] Num frames 7300...
591
+ [2024-08-16 15:07:50,415][09795] Num frames 7400...
592
+ [2024-08-16 15:07:50,501][09795] Num frames 7500...
593
+ [2024-08-16 15:07:50,594][09795] Num frames 7600...
594
+ [2024-08-16 15:07:50,651][09795] Avg episode rewards: #0: 28.673, true rewards: #0: 12.673
595
+ [2024-08-16 15:07:50,651][09795] Avg episode reward: 28.673, avg true_objective: 12.673
596
+ [2024-08-16 15:07:50,736][09795] Num frames 7700...
597
+ [2024-08-16 15:07:50,826][09795] Num frames 7800...
598
+ [2024-08-16 15:07:50,904][09795] Num frames 7900...
599
+ [2024-08-16 15:07:50,997][09795] Num frames 8000...
600
+ [2024-08-16 15:07:51,078][09795] Num frames 8100...
601
+ [2024-08-16 15:07:51,162][09795] Num frames 8200...
602
+ [2024-08-16 15:07:51,248][09795] Num frames 8300...
603
+ [2024-08-16 15:07:51,328][09795] Num frames 8400...
604
+ [2024-08-16 15:07:51,413][09795] Num frames 8500...
605
+ [2024-08-16 15:07:51,464][09795] Avg episode rewards: #0: 27.000, true rewards: #0: 12.143
606
+ [2024-08-16 15:07:51,465][09795] Avg episode reward: 27.000, avg true_objective: 12.143
607
+ [2024-08-16 15:07:51,555][09795] Num frames 8600...
608
+ [2024-08-16 15:07:51,644][09795] Num frames 8700...
609
+ [2024-08-16 15:07:51,723][09795] Num frames 8800...
610
+ [2024-08-16 15:07:51,802][09795] Num frames 8900...
611
+ [2024-08-16 15:07:51,885][09795] Num frames 9000...
612
+ [2024-08-16 15:07:51,965][09795] Num frames 9100...
613
+ [2024-08-16 15:07:52,080][09795] Avg episode rewards: #0: 25.466, true rewards: #0: 11.466
614
+ [2024-08-16 15:07:52,080][09795] Avg episode reward: 25.466, avg true_objective: 11.466
615
+ [2024-08-16 15:07:52,103][09795] Num frames 9200...
616
+ [2024-08-16 15:07:52,183][09795] Num frames 9300...
617
+ [2024-08-16 15:07:52,263][09795] Num frames 9400...
618
+ [2024-08-16 15:07:52,388][09795] Avg episode rewards: #0: 23.210, true rewards: #0: 10.543
619
+ [2024-08-16 15:07:52,389][09795] Avg episode reward: 23.210, avg true_objective: 10.543
620
+ [2024-08-16 15:07:52,398][09795] Num frames 9500...
621
+ [2024-08-16 15:07:52,472][09795] Num frames 9600...
622
+ [2024-08-16 15:07:52,549][09795] Num frames 9700...
623
+ [2024-08-16 15:07:52,626][09795] Num frames 9800...
624
+ [2024-08-16 15:07:52,708][09795] Num frames 9900...
625
+ [2024-08-16 15:07:52,794][09795] Num frames 10000...
626
+ [2024-08-16 15:07:52,883][09795] Num frames 10100...
627
+ [2024-08-16 15:07:52,966][09795] Num frames 10200...
628
+ [2024-08-16 15:07:53,040][09795] Num frames 10300...
629
+ [2024-08-16 15:07:53,118][09795] Num frames 10400...
630
+ [2024-08-16 15:07:53,200][09795] Num frames 10500...
631
+ [2024-08-16 15:07:53,275][09795] Num frames 10600...
632
+ [2024-08-16 15:07:53,349][09795] Num frames 10700...
633
+ [2024-08-16 15:07:53,426][09795] Num frames 10800...
634
+ [2024-08-16 15:07:53,502][09795] Num frames 10900...
635
+ [2024-08-16 15:07:53,580][09795] Num frames 11000...
636
+ [2024-08-16 15:07:53,659][09795] Num frames 11100...
637
+ [2024-08-16 15:07:53,735][09795] Num frames 11200...
638
+ [2024-08-16 15:07:53,813][09795] Num frames 11300...
639
+ [2024-08-16 15:07:53,890][09795] Num frames 11400...
640
+ [2024-08-16 15:07:53,964][09795] Num frames 11500...
641
+ [2024-08-16 15:07:54,024][09795] Avg episode rewards: #0: 25.908, true rewards: #0: 11.508
642
+ [2024-08-16 15:07:54,024][09795] Avg episode reward: 25.908, avg true_objective: 11.508
643
+ [2024-08-16 15:08:10,415][09795] Replay video saved to /media/nguyen-duc-huy/E/Code/Deep_RL/train_dir/default_experiment/replay.mp4!