--- license: apache-2.0 base_model: google/electra-small-discriminator tags: - generated_from_keras_callback model-index: - name: nguyennghia0902/electra-small-discriminator_0.0005_32 results: [] language: - vi pipeline_tag: question-answering --- # nguyennghia0902/electra-small-discriminator_0.0005_32 This model is a fine-tuned version of [google/electra-small-discriminator](https://huggingface.co/google/electra-small-discriminator) on [Vietnamese dataset](https://www.kaggle.com/datasets/duyminhnguyentran/csc15105). It achieves the following results on the evaluation set: - Train Loss: 0.9748 - Train End Logits Accuracy: 0.7441 - Train Start Logits Accuracy: 0.7181 - Validation Loss: 0.5570 - Validation End Logits Accuracy: 0.8476 - Validation Start Logits Accuracy: 0.8405 - Validation Matching Accuracy: 0.7642 - Epoch: 10 - Train time: 13988.27401 seconds ~ 3.8855 hours ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - Learning rate: 5e-4 - Batch size: 32 - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 0.0005, 'decay_steps': 15630, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train End Logits Accuracy | Train Start Logits Accuracy | Validation Loss | Validation End Logits Accuracy | Validation Start Logits Accuracy | Epoch | |:----------:|:-------------------------:|:---------------------------:|:---------------:|:------------------------------:|:--------------------------------:|:-----:| | 3.4201 | 0.2553 | 0.2310 | 2.6430 | 0.3942 | 0.3704 | 1 | | 2.7588 | 0.3762 | 0.3462 | 2.2758 | 0.4660 | 0.4482 | 2 | | 2.4695 | 0.4323 | 0.3983 | 2.0056 | 0.5211 | 0.5006 | 3 | | 2.2478 | 0.4745 | 0.4407 | 1.7412 | 0.5763 | 0.5595 | 4 | | 2.0321 | 0.5186 | 0.4864 | 1.5126 | 0.6289 | 0.6095 | 5 | | 1.8186 | 0.5614 | 0.5319 | 1.2839 | 0.6719 | 0.6647 | 6 | | 1.6012 | 0.6060 | 0.5760 | 1.0431 | 0.7322 | 0.7264 | 7 | | 1.3677 | 0.6561 | 0.6257 | 0.8193 | 0.7857 | 0.7770 | 8 | | 1.1450 | 0.7023 | 0.6765 | 0.6373 | 0.8275 | 0.8215 | 9 | | 0.9748 | 0.7441 | 0.7181 | 0.5570 | 0.8476 | 0.8405 | 10 | ### Framework versions - Transformers 4.39.3 - TensorFlow 2.15.0 - Datasets 2.18.0 - Tokenizers 0.15.2