speaker-embedding / wav2filterbank.py
nguyenvulebinh's picture
upload infer utils
fd06d88
import librosa
import numpy as np
import torch
import torch.nn as nn
import logging
import math
import random
CONSTANT = 1e-5
def normalize_batch(x, seq_len, normalize_type):
x_mean = None
x_std = None
if normalize_type == "per_feature":
x_mean = torch.zeros((seq_len.shape[0], x.shape[1]), dtype=x.dtype, device=x.device)
x_std = torch.zeros((seq_len.shape[0], x.shape[1]), dtype=x.dtype, device=x.device)
for i in range(x.shape[0]):
if x[i, :, : seq_len[i]].shape[1] == 1:
raise ValueError(
"normalize_batch with `per_feature` normalize_type received a tensor of length 1. This will result "
"in torch.std() returning nan. Make sure your audio length has enough samples for a single "
"feature (ex. at least `hop_length` for Mel Spectrograms)."
)
x_mean[i, :] = x[i, :, : seq_len[i]].mean(dim=1)
x_std[i, :] = x[i, :, : seq_len[i]].std(dim=1)
# make sure x_std is not zero
x_std += CONSTANT
return (x - x_mean.unsqueeze(2)) / x_std.unsqueeze(2), x_mean, x_std
elif normalize_type == "all_features":
x_mean = torch.zeros(seq_len.shape, dtype=x.dtype, device=x.device)
x_std = torch.zeros(seq_len.shape, dtype=x.dtype, device=x.device)
for i in range(x.shape[0]):
x_mean[i] = x[i, :, : seq_len[i].item()].mean()
x_std[i] = x[i, :, : seq_len[i].item()].std()
# make sure x_std is not zero
x_std += CONSTANT
return (x - x_mean.view(-1, 1, 1)) / x_std.view(-1, 1, 1), x_mean, x_std
elif "fixed_mean" in normalize_type and "fixed_std" in normalize_type:
x_mean = torch.tensor(normalize_type["fixed_mean"], device=x.device)
x_std = torch.tensor(normalize_type["fixed_std"], device=x.device)
return (
(x - x_mean.view(x.shape[0], x.shape[1]).unsqueeze(2)) / x_std.view(x.shape[0], x.shape[1]).unsqueeze(2),
x_mean,
x_std,
)
else:
return x, x_mean, x_std
def splice_frames(x, frame_splicing):
""" Stacks frames together across feature dim
input is batch_size, feature_dim, num_frames
output is batch_size, feature_dim*frame_splicing, num_frames
"""
seq = [x]
for n in range(1, frame_splicing):
seq.append(torch.cat([x[:, :, :n], x[:, :, n:]], dim=2))
return torch.cat(seq, dim=1)
class FilterbankFeatures(nn.Module):
"""Featurizer that converts wavs to Mel Spectrograms.
See AudioToMelSpectrogramPreprocessor for args.
"normalize": "per_feature",
"window_size": 0.025,
"sample_rate": 16000,
"window_stride": 0.01,
"window": "hann",
"features": 80,
"n_fft": 512,
"frame_splicing": 1,
"dither": 1e-05
n_window_size=window_size * sample_rate,
n_window_stride = window_stride * sample_rate,
"""
def __init__(
self,
sample_rate=16000,
n_window_size=400,
n_window_stride=160,
window="hann",
normalize="per_feature",
n_fft=512,
preemph=0.97,
nfilt=80,
lowfreq=0,
highfreq=None,
log=True,
log_zero_guard_type="add",
log_zero_guard_value=2 ** -24,
dither=CONSTANT,
pad_to=16,
max_duration=16.7,
frame_splicing=1,
exact_pad=False,
pad_value=0,
mag_power=2.0,
use_grads=False,
rng=None,
nb_augmentation_prob=0.0,
nb_max_freq=4000,
stft_exact_pad=False, # Deprecated arguments; kept for config compatibility
stft_conv=False, # Deprecated arguments; kept for config compatibility
):
super().__init__()
if stft_conv or stft_exact_pad:
logging.warning(
"Using torch_stft is deprecated and has been removed. The values have been forcibly set to False "
"for FilterbankFeatures and AudioToMelSpectrogramPreprocessor. Please set exact_pad to True "
"as needed."
)
if exact_pad and n_window_stride % 2 == 1:
raise NotImplementedError(
f"{self} received exact_pad == True, but hop_size was odd. If audio_length % hop_size == 0. Then the "
"returned spectrogram would not be of length audio_length // hop_size. Please use an even hop_size."
)
self.log_zero_guard_value = log_zero_guard_value
if (
n_window_size is None
or n_window_stride is None
or not isinstance(n_window_size, int)
or not isinstance(n_window_stride, int)
or n_window_size <= 0
or n_window_stride <= 0
):
raise ValueError(
f"{self} got an invalid value for either n_window_size or "
f"n_window_stride. Both must be positive ints."
)
logging.info(f"PADDING: {pad_to}")
self.win_length = n_window_size
self.hop_length = n_window_stride
self.n_fft = n_fft or 2 ** math.ceil(math.log2(self.win_length))
self.stft_pad_amount = (self.n_fft - self.hop_length) // 2 if exact_pad else None
if exact_pad:
logging.info("STFT using exact pad")
torch_windows = {
'hann': torch.hann_window,
'hamming': torch.hamming_window,
'blackman': torch.blackman_window,
'bartlett': torch.bartlett_window,
'none': None,
}
window_fn = torch_windows.get(window, None)
window_tensor = window_fn(self.win_length, periodic=False) if window_fn else None
self.register_buffer("window", window_tensor)
self.stft = lambda x: torch.stft(
x,
n_fft=self.n_fft,
hop_length=self.hop_length,
win_length=self.win_length,
center=False if exact_pad else True,
window=self.window.to(dtype=torch.float),
return_complex=True,
)
self.normalize = normalize
self.log = log
self.dither = dither
self.frame_splicing = frame_splicing
self.nfilt = nfilt
self.preemph = preemph
self.pad_to = pad_to
highfreq = highfreq or sample_rate / 2
filterbanks = torch.tensor(
librosa.filters.mel(sr=sample_rate, n_fft=self.n_fft, n_mels=nfilt, fmin=lowfreq, fmax=highfreq),
dtype=torch.float,
).unsqueeze(0)
self.register_buffer("fb", filterbanks)
# Calculate maximum sequence length
max_length = self.get_seq_len(torch.tensor(max_duration * sample_rate, dtype=torch.float))
max_pad = pad_to - (max_length % pad_to) if pad_to > 0 else 0
self.max_length = max_length + max_pad
self.pad_value = pad_value
self.mag_power = mag_power
# We want to avoid taking the log of zero
# There are two options: either adding or clamping to a small value
if log_zero_guard_type not in ["add", "clamp"]:
raise ValueError(
f"{self} received {log_zero_guard_type} for the "
f"log_zero_guard_type parameter. It must be either 'add' or "
f"'clamp'."
)
self.use_grads = use_grads
if not use_grads:
self.forward = torch.no_grad()(self.forward)
self._rng = random.Random() if rng is None else rng
self.nb_augmentation_prob = nb_augmentation_prob
if self.nb_augmentation_prob > 0.0:
if nb_max_freq >= sample_rate / 2:
self.nb_augmentation_prob = 0.0
else:
self._nb_max_fft_bin = int((nb_max_freq / sample_rate) * n_fft)
# log_zero_guard_value is the the small we want to use, we support
# an actual number, or "tiny", or "eps"
self.log_zero_guard_type = log_zero_guard_type
logging.debug(f"sr: {sample_rate}")
logging.debug(f"n_fft: {self.n_fft}")
logging.debug(f"win_length: {self.win_length}")
logging.debug(f"hop_length: {self.hop_length}")
logging.debug(f"n_mels: {nfilt}")
logging.debug(f"fmin: {lowfreq}")
logging.debug(f"fmax: {highfreq}")
logging.debug(f"using grads: {use_grads}")
logging.debug(f"nb_augmentation_prob: {nb_augmentation_prob}")
def log_zero_guard_value_fn(self, x):
if isinstance(self.log_zero_guard_value, str):
if self.log_zero_guard_value == "tiny":
return torch.finfo(x.dtype).tiny
elif self.log_zero_guard_value == "eps":
return torch.finfo(x.dtype).eps
else:
raise ValueError(
f"{self} received {self.log_zero_guard_value} for the "
f"log_zero_guard_type parameter. It must be either a "
f"number, 'tiny', or 'eps'"
)
else:
return self.log_zero_guard_value
def get_seq_len(self, seq_len):
# Assuming that center is True is stft_pad_amount = 0
pad_amount = self.stft_pad_amount * 2 if self.stft_pad_amount is not None else self.n_fft // 2 * 2
seq_len = torch.floor((seq_len + pad_amount - self.n_fft) / self.hop_length) + 1
return seq_len.to(dtype=torch.long)
@property
def filter_banks(self):
return self.fb
def forward(self, x, seq_len, linear_spec=False):
seq_len = self.get_seq_len(seq_len.float())
if self.stft_pad_amount is not None:
x = torch.nn.functional.pad(
x.unsqueeze(1), (self.stft_pad_amount, self.stft_pad_amount), "reflect"
).squeeze(1)
# dither (only in training mode for eval determinism)
if self.training and self.dither > 0:
x += self.dither * torch.randn_like(x)
# do preemphasis
if self.preemph is not None:
x = torch.cat((x[:, 0].unsqueeze(1), x[:, 1:] - self.preemph * x[:, :-1]), dim=1)
# disable autocast to get full range of stft values
with torch.cuda.amp.autocast(enabled=False):
x = self.stft(x)
# torch stft returns complex tensor (of shape [B,N,T]); so convert to magnitude
# guard is needed for sqrt if grads are passed through
guard = 0 if not self.use_grads else CONSTANT
x = torch.view_as_real(x)
x = torch.sqrt(x.pow(2).sum(-1) + guard)
if self.training and self.nb_augmentation_prob > 0.0:
for idx in range(x.shape[0]):
if self._rng.random() < self.nb_augmentation_prob:
x[idx, self._nb_max_fft_bin :, :] = 0.0
# get power spectrum
if self.mag_power != 1.0:
x = x.pow(self.mag_power)
# return plain spectrogram if required
if linear_spec:
return x, seq_len
# dot with filterbank energies
x = torch.matmul(self.fb.to(x.dtype), x)
# log features if required
if self.log:
if self.log_zero_guard_type == "add":
x = torch.log(x + self.log_zero_guard_value_fn(x))
elif self.log_zero_guard_type == "clamp":
x = torch.log(torch.clamp(x, min=self.log_zero_guard_value_fn(x)))
else:
raise ValueError("log_zero_guard_type was not understood")
# frame splicing if required
if self.frame_splicing > 1:
x = splice_frames(x, self.frame_splicing)
# normalize if required
if self.normalize:
x, _, _ = normalize_batch(x, seq_len, normalize_type=self.normalize)
# mask to zero any values beyond seq_len in batch, pad to multiple of `pad_to` (for efficiency)
max_len = x.size(-1)
mask = torch.arange(max_len).to(x.device)
mask = mask.repeat(x.size(0), 1) >= seq_len.unsqueeze(1)
x = x.masked_fill(mask.unsqueeze(1).type(torch.bool).to(device=x.device), self.pad_value)
del mask
pad_to = self.pad_to
if pad_to == "max":
x = nn.functional.pad(x, (0, self.max_length - x.size(-1)), value=self.pad_value)
elif pad_to > 0:
pad_amt = x.size(-1) % pad_to
if pad_amt != 0:
x = nn.functional.pad(x, (0, pad_to - pad_amt), value=self.pad_value)
return x, seq_len