ngxson
init
ae1a83e
raw
history blame
2.31 kB
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, HfArgumentParser, TrainingArguments, pipeline, logging, TextStreamer
from peft import LoraConfig, PeftModel, prepare_model_for_kbit_training, get_peft_model
import os, torch, wandb, platform, warnings
from datasets import load_dataset
from trl import SFTTrainer
hf_token = '..........'
tokenizer = AutoTokenizer.from_pretrained('./vistral-tokenizer')
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16,
bnb_4bit_use_double_quant=True,
)
model = AutoModelForCausalLM.from_pretrained(
'Viet-Mistral/Vistral-7B-Chat',
device_map="auto",
token=hf_token,
quantization_config=bnb_config,
)
ft_model = PeftModel.from_pretrained(model, CHECKPOINT_PATH)
#torch.backends.cuda.enable_mem_efficient_sdp(False)
#torch.backends.cuda.enable_flash_sdp(False)
system_prompt = "Bạn là một trợ lí Tiếng Việt nhiệt tình và trung thực. Hãy luôn trả lời một cách hữu ích nhất có thể, đồng thời giữ an toàn."
stop_tokens = [tokenizer.eos_token_id, tokenizer('<|im_end|>')['input_ids'].pop()]
def chat_test():
conversation = [{"role": "system", "content": system_prompt }]
while True:
human = input("Human: ")
if human.lower() == "reset":
conversation = [{"role": "system", "content": system_prompt }]
print("The chat history has been cleared!")
continue
if human.lower() == "exit":
break
conversation.append({"role": "user", "content": human })
formatted = tokenizer.apply_chat_template(conversation, tokenize=False) + "<|im_start|>assistant"
tok = tokenizer(formatted, return_tensors="pt").to(ft_model.device)
input_ids = tok['input_ids']
out_ids = ft_model.generate(
input_ids=input_ids,
attention_mask=tok['attention_mask'],
eos_token_id=stop_tokens,
max_new_tokens=50,
do_sample=True,
top_p=0.95,
top_k=40,
temperature=0.1,
repetition_penalty=1.05,
)
assistant = tokenizer.batch_decode(out_ids[:, input_ids.size(1): ], skip_special_tokens=True)[0].strip()
print("Assistant: ", assistant)
conversation.append({"role": "assistant", "content": assistant })
chat_test()