Text Generation
Transformers
PyTorch
Safetensors
English
gpt2
alignment
instruction tuned
text generation
conversation
assistant
dpo
text-generation-inference
Inference Endpoints
File size: 7,451 Bytes
1a8184c
 
 
52f917b
f1b6115
1a8184c
 
52f917b
 
1a8184c
 
52f917b
 
 
 
 
699b4d4
52f917b
 
f1b6115
 
 
52f917b
f1b6115
 
 
52f917b
f1b6115
 
 
52f917b
 
 
 
 
 
 
 
 
 
 
c262987
52f917b
 
 
 
1a8184c
699b4d4
52f917b
e8d5663
52f917b
 
 
 
 
 
699b4d4
52f917b
699b4d4
 
 
52f917b
699b4d4
 
52f917b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d30d2b
 
52f917b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e8d5663
52f917b
e8d5663
 
 
52f917b
 
 
5ca1e16
699b4d4
 
 
 
 
 
 
 
 
 
52f917b
 
 
 
 
 
 
 
7fc1dfb
52f917b
 
 
7fc1dfb
 
52f917b
1a8184c
7fc1dfb
 
 
 
 
 
1a8184c
 
52f917b
f09d00d
e8d5663
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
---
license: apache-2.0
datasets:
- nicholasKluge/instruct-aira-dataset
- nicholasKluge/reward-aira-dataset
language:
- en
metrics:
- accuracy
library_name: transformers
tags:
- alignment
- instruction tuned
- text generation
- conversation
- assistant
- dpo
pipeline_tag: text-generation
widget:
- text: >-
    <|startofinstruction|>Can you explain what is Machine
    Learning?<|endofinstruction|>
  example_title: Machine Learning
- text: >-
    <|startofinstruction|>Do you know anything about virtue
    ethics?<|endofinstruction|>
  example_title: Ethics
- text: >-
    <|startofinstruction|>How can I make my girlfriend
    happy?<|endofinstruction|>
  example_title: Advise
inference:
  parameters:
    repetition_penalty: 1.2
    temperature: 0.2
    top_k: 30
    top_p: 0.3
    max_new_tokens: 200
    length_penalty: 0.3
    early_stopping: true
co2_eq_emissions:
  emissions: 150
  source: CodeCarbon
  training_type: fine-tuning
  geographical_location: United States of America
  hardware_used: NVIDIA A100-SXM4-40GB
---
# Aira-2-124M-DPO

Aira-2 is the second version of the Aira instruction-tuned series. Aira-2-124M-DPO is an instruction-tuned model further fine-tuned via DPO based on [Aira-2-124M](https://huggingface.co/nicholasKluge/Aira-2-124M). The model was first trained with supervised fine-tuning (STF) with a dataset composed of prompts and completions generated synthetically by prompting already-tuned models (ChatGPT, Llama, Open-Assistant, etc). Secondly, the model was fine-tuned again via DPO using a reward dataset created by the [`Aira-RewardModel`](https://huggingface.co/nicholasKluge/RewardModel).

Check our gradio-demo in [Spaces](https://huggingface.co/spaces/nicholasKluge/Aira-Demo).

## Details

- **Size:** 124,441,344 parameters
- **Datasets:** [Instruct-Aira Dataset](https://huggingface.co/datasets/nicholasKluge/instruct-aira-dataset), [Reward-Aira Dataset](https://huggingface.co/datasets/nicholasKluge/reward-aira-dataset)
- **Language:** English
- **Number of Epochs:** 1
- **Batch size:** 8
- **Optimizer:** `torch.optim.AdamW` (warmup_steps = 1e2, learning_rate = 5e-5, epsilon = 1e-8)
- **GPU:** 1 NVIDIA A100-SXM4-40GB
- **Emissions:** 0.15 KgCO2 (Singapore)
- **Total Energy Consumption:** 0.32 kWh

This repository has the [source code](https://github.com/Nkluge-correa/Aira) used to train this model.

## Usage

Three special tokens are used to mark the user side of the interaction and the model's response:

`<|startofinstruction|>`What is a language model?`<|endofinstruction|>`A language model is a probability distribution over a vocabulary.`<|endofcompletion|>`

```python
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

tokenizer = AutoTokenizer.from_pretrained('nicholasKluge/Aira-2-124M-DPO')
aira = AutoModelForCausalLM.from_pretrained('nicholasKluge/Aira-2-124M-DPO')

aira.eval()
aira.to(device)

question =  input("Enter your question: ")

inputs = tokenizer(tokenizer.bos_token + question + tokenizer.sep_token,
  add_special_tokens=False,
  return_tensors="pt").to(device)

responses = aira.generate(**inputs,	num_return_sequences=2)

print(f"Question: 👤 {question}\n")

for i, response in  enumerate(responses):
	print(f'Response {i+1}: 🤖 {tokenizer.decode(response, skip_special_tokens=True).replace(question, "")}')
```

The model will output something like:

```markdown
>>>Question: 👤 What is the capital of Brazil?

>>>Response 1: 🤖 The capital of Brazil is Brasília.
>>>Response 2: 🤖 The capital of Brazil is Brasília.
```

## Limitations

- **Hallucinations:** This model can produce content that can be mistaken for truth but is, in fact, misleading or entirely false, i.e., hallucination.

- **Biases and Toxicity:** This model inherits the social and historical stereotypes from the data used to train it. Given these biases, the model can produce toxic content, i.e., harmful, offensive, or detrimental to individuals, groups, or communities.

- **Repetition and Verbosity:** The model may get stuck on repetition loops (especially if the repetition penalty during generations is set to a meager value) or produce verbose responses unrelated to the prompt it was given.

## Evaluation

|Model                                                                   |Average   |[ARC](https://arxiv.org/abs/1803.05457) |[TruthfulQA](https://arxiv.org/abs/2109.07958) |[ToxiGen](https://arxiv.org/abs/2203.09509) |
| ---------------------------------------------------------------------- | -------- | -------------------------------------- | --------------------------------------------- | ------------------------------------------ | 
|[Aira-2-124M-DPO](https://huggingface.co/nicholasKluge/Aira-2-124M-DPO) |**40.68** |**24.66**                               |**42.61**                                      |**54.79**                                   |
|[Aira-2-124M](https://huggingface.co/nicholasKluge/Aira-2-124M)         |38.07     |24.57                                   |41.02                                          |48.62                                       |
|GPT-2                                                                   |35.37     |21.84                                   |40.67                                          |43.62                                       |
|[Aira-2-355M](https://huggingface.co/nicholasKluge/Aira-2-355M)         |**39.68** |**27.56**                               |38.53                                          |**53.19**                                   |
|GPT-2-medium                                                            |36.43     |27.05                                   |**40.76**                                      |41.49                                       |
|[Aira-2-774M](https://huggingface.co/nicholasKluge/Aira-2-774M)         |**42.26** |**28.75**                               |**41.33**                                      |**56.70**                                   |
|GPT-2-large                                                             |35.16     |25.94                                   |38.71                                          |40.85                                       |
|[Aira-2-1B5](https://huggingface.co/nicholasKluge/Aira-2-1B5)           |**42.22** |28.92                                   |**41.16**                                      |**56.60**                                   |
|GPT-2-xl                                                                |36.84     |**30.29**                               |38.54                                          |41.70                                       |

* Evaluations were performed using the [Language Model Evaluation Harness](https://github.com/EleutherAI/lm-evaluation-harness) (by [EleutherAI](https://www.eleuther.ai/)).

## Cite as 🤗

```latex
@misc{nicholas22aira,
  doi = {10.5281/zenodo.6989727},
  url = {https://github.com/Nkluge-correa/Aira},
  author = {Nicholas Kluge Corrêa},
  title = {Aira},
  year = {2023},
  publisher = {GitHub},
  journal = {GitHub repository},
}

@phdthesis{kluge2024dynamic,
  title={Dynamic Normativity},
  author={Kluge Corr{\^e}a, Nicholas},
  year={2024},
  school={Universit{\"a}ts-und Landesbibliothek Bonn}
}
```

## License

Aira-2-124M-DPO is licensed under the Apache License, Version 2.0. See the [LICENSE](LICENSE) file for more details.