File size: 7,175 Bytes
df5c880 0432450 df5c880 20ef17e df5c880 fb5db93 df5c880 9a7f11a df5c880 4a52f53 df5c880 fb5db93 b725d89 df5c880 04e7aa8 df5c880 faa73cd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 |
---
license: apache-2.0
datasets:
- nicholasKluge/instruct-aira-dataset
language:
- en
metrics:
- accuracy
library_name: transformers
tags:
- alignment
- instruction tuned
- text generation
- conversation
- assistant
pipeline_tag: text-generation
widget:
- text: "<|startofinstruction|>What is your name?<|endofinstruction|>"
example_title: Greetings
- text: "<|startofinstruction|>Can you explain what is Machine Learning?<|endofinstruction|>"
example_title: Machine Learning
- text: "<|startofinstruction|>Do you know anything about virtue ethics?<|endofinstruction|>"
example_title: Ethics
- text: "<|startofinstruction|>How can I make my girlfriend happy?<|endofinstruction|>"
example_title: Advise
inference:
parameters:
repetition_penalty: 1.2
temperature: 0.2
top_k: 30
top_p: 0.3
max_new_tokens: 200
length_penalty: 0.3
early_stopping: true
co2_eq_emissions:
emissions: 0.77
source: CodeCarbon
training_type: fine-tuning
geographical_location: United States of America
hardware_used: NVIDIA A100-SXM4-40GB
---
# Aira-2-774M
`Aira-2` is the second version of the Aira instruction-tuned series. `Aira-2-774M` is an instruction-tuned GPT-style model based on [GPT-2](https://huggingface.co/gpt2-large). The model was trained with a dataset composed of prompts and completions generated synthetically by prompting already-tuned models (ChatGPT, Llama, Open-Assistant, etc).
Check our gradio-demo in [Spaces](https://huggingface.co/spaces/nicholasKluge/Aira-Demo).
## Details
- **Size:** 774,032,640 parameters
- **Dataset:** [Instruct-Aira Dataset](https://huggingface.co/datasets/nicholasKluge/instruct-aira-dataset)
- **Language:** English
- **Number of Epochs:** 3
- **Batch size:** 8
- **Optimizer:** `torch.optim.AdamW` (warmup_steps = 1e2, learning_rate = 5e-4, epsilon = 1e-8)
- **GPU:** 1 NVIDIA A100-SXM4-40GB
- **Emissions:** 0.77 KgCO2 (Singapore)
- **Total Energy Consumption:** 1.58 kWh
This repository has the [source code](https://github.com/Nkluge-correa/Aira) used to train this model.
## Usage
Three special tokens are used to mark the user side of the interaction and the model's response:
`<|startofinstruction|>`What is a language model?`<|endofinstruction|>`A language model is a probability distribution over a vocabulary.`<|endofcompletion|>`
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
tokenizer = AutoTokenizer.from_pretrained('nicholasKluge/Aira-2-774M')
aira = AutoModelForCausalLM.from_pretrained('nicholasKluge/Aira-2-774M')
aira.eval()
aira.to(device)
question = input("Enter your question: ")
inputs = tokenizer(tokenizer.bos_token + question + tokenizer.sep_token,
add_special_tokens=False,
return_tensors="pt").to(device)
responses = aira.generate(**inputs,
do_sample=True,
top_k=50,
top_p=0.95,
temperature=0.7,
num_return_sequences=2)
print(f"Question: 👤 {question}\n")
for i, response in enumerate(responses):
print(f'Response {i+1}: 🤖 {tokenizer.decode(response, skip_special_tokens=True).replace(question, "")}')
```
The model will output something like:
```markdown
>>>Question: 👤 What is the capital of Brazil?
>>>Response 1: 🤖 The capital of Brazil is Brasília.
>>>Response 2: 🤖 The capital of Brazil is Brasília.
```
## Limitations
🤥 Generative models can perpetuate the generation of pseudo-informative content, that is, false information that may appear truthful.
🤬 In certain types of tasks, generative models can produce harmful and discriminatory content inspired by historical stereotypes.
## Evaluation
| Model (GPT-2) | Average | [ARC](https://arxiv.org/abs/1803.05457) | [TruthfulQA](https://arxiv.org/abs/2109.07958) | [ToxiGen](https://arxiv.org/abs/2203.09509) | | |
|-----------------------------------------------------------------|-----------|-----------------------------------------|------------------------------------------------|---------------------------------------------|---|---|
| [Aira-2-124M](https://huggingface.co/nicholasKluge/Aira-2-124M) | **38.07** | **24.57** | **41.02** | **48.62** | | |
| GPT-2 | 35.37 | 21.84 | 40.67 | 43.62 | | |
| [Aira-2-355M](https://huggingface.co/nicholasKluge/Aira-2-355M) | **39.68** | **27.56** | 38.53 | **53.19** | | |
| GPT-2-medium | 36.43 | 27.05 | **40.76** | 41.49 | | |
| [Aira-2-774M](https://huggingface.co/nicholasKluge/Aira-2-774M) | **42.26** | **28.75** | **41.33** | **56.70** | | |
| GPT-2-large | 35.16 | 25.94 | 38.71 | 40.85 | | |
| [Aira-2-1B5](https://huggingface.co/nicholasKluge/Aira-2-1B5) | **42.22** | 28.92 | **41.16** | **56.60** | | |
| GPT-2-xl | 36.84 | **30.29** | 38.54 | 41.70 | | |
* Evaluations were performed using the [Language Model Evaluation Harness](https://github.com/EleutherAI/lm-evaluation-harness) (by [EleutherAI](https://www.eleuther.ai/)).
## Cite as 🤗
```latex
@misc{nicholas22aira,
doi = {10.5281/zenodo.6989727},
url = {https://huggingface.co/nicholasKluge/Aira-2-774M},
author = {Nicholas Kluge Corrêa},
title = {Aira},
year = {2023},
publisher = {HuggingFace},
journal = {HuggingFace repository},
}
```
## License
The `Aira-2-774M` is licensed under the Apache License, Version 2.0. See the [LICENSE](LICENSE) file for more details.
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_nicholasKluge__Aira-2-774M)
| Metric | Value |
|-----------------------|---------------------------|
| Avg. | 27.47 |
| ARC (25-shot) | 28.75 |
| HellaSwag (10-shot) | 40.8 |
| MMLU (5-shot) | 25.1 |
| TruthfulQA (0-shot) | 41.33 |
| Winogrande (5-shot) | 52.01 |
| GSM8K (5-shot) | 0.0 |
| DROP (3-shot) | 4.26 |
|