File size: 6,203 Bytes
9877e08 7f4aa58 9877e08 7f4aa58 9877e08 7f4aa58 9877e08 7f4aa58 9877e08 7f4aa58 9877e08 c6cf496 9877e08 bc3ead1 9877e08 0feddf1 9877e08 bc3ead1 9877e08 7f4aa58 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 |
---
license: other
datasets:
- nicholasKluge/instruct-aira-dataset
language:
- en
metrics:
- accuracy
library_name: transformers
tags:
- alignment
- instruction tuned
- text generation
- conversation
- assistant
pipeline_tag: text-generation
widget:
- text: <|startofinstruction|>What is your name?<|endofinstruction|>
example_title: Greetings
- text: >-
<|startofinstruction|>Can you explain what is Machine
Learning?<|endofinstruction|>
example_title: Machine Learning
- text: >-
<|startofinstruction|>Do you know anything about virtue
ethics?<|endofinstruction|>
example_title: Ethics
- text: >-
<|startofinstruction|>How can I make my girlfriend
happy?<|endofinstruction|>
example_title: Advise
inference:
parameters:
repetition_penalty: 1.2
temperature: 0.2
top_k: 30
top_p: 0.3
max_length: 200
length_penalty: 0.3
early_stopping: true
co2_eq_emissions:
emissions: 1.46
source: CodeCarbon
training_type: fine-tuning
geographical_location: Singapore
hardware_used: NVIDIA A100-SXM4-40GB
---
# Aira-OPT-1B3
`Aira-2` is the second version of the Aira instruction-tuned series. `Aira-OPT-1B3` is an instruction-tuned OPT-style model based on [OPT](https://huggingface.co/facebook/opt-1.3b). The model was trained with a dataset composed of prompts and completions generated synthetically by prompting already-tuned models (ChatGPT, Llama, Open-Assistant, etc).
Check our gradio-demo in [Spaces](https://huggingface.co/spaces/nicholasKluge/Aira-Demo).
## Details
- **Size:** 1,315,753,984 parameters
- **Dataset:** [Instruct-Aira Dataset](https://huggingface.co/datasets/nicholasKluge/instruct-aira-dataset)
- **Language:** English
- **Number of Epochs:** 3
- **Batch size:** 4
- **Optimizer:** `torch.optim.AdamW` (warmup_steps = 1e2, learning_rate = 5e-5, epsilon = 1e-8)
- **GPU:** 1 NVIDIA A100-SXM4-40GB
- **Emissions:** 1.46 KgCO2 (Singapore)
- **Total Energy Consumption:** 3.00 kWh
This repository has the [source code](https://github.com/Nkluge-correa/Aira) used to train this model.
## Usage
Three special tokens are used to mark the user side of the interaction and the model's response:
`<|startofinstruction|>`What is a language model?`<|endofinstruction|>`A language model is a probability distribution over a vocabulary.`<|endofcompletion|>`
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
tokenizer = AutoTokenizer.from_pretrained('nicholasKluge/Aira-OPT-1B3')
aira = AutoModelForCausalLM.from_pretrained('nicholasKluge/Aira-OPT-1B3')
aira.eval()
aira.to(device)
question = input("Enter your question: ")
# OPT tokenizer already adds the BOS token, so we do not need to add it manually
inputs = tokenizer(question + tokenizer.sep_token, return_tensors="pt").to(device)
responses = aira.generate(**inputs,
do_sample=True,
top_k=50,
top_p=0.95,
temperature=0.7,
num_return_sequences=2)
print(f"Question: 👤 {question}\n")
for i, response in enumerate(responses):
print(f'Response {i+1}: 🤖 {tokenizer.decode(response, skip_special_tokens=True).replace(question, "")}')
```
The model will output something like:
```markdown
>>>Question: 👤 What is the capital of Brazil?
>>>Response 1: 🤖 The capital of Brazil is Brasília.
>>>Response 2: 🤖 The capital of Brazil is Brasília.
```
## Limitations
🤥 Generative models can perpetuate the generation of pseudo-informative content, that is, false information that may appear truthful.
🤬 In certain types of tasks, generative models can produce harmful and discriminatory content inspired by historical stereotypes.
## Evaluation
| Model (OPT) | Average | [ARC](https://arxiv.org/abs/1803.05457) | [TruthfulQA](https://arxiv.org/abs/2109.07958) | [ToxiGen](https://arxiv.org/abs/2203.09509) | | |
|---------------------------------------------------------------------|-----------|-----------------------------------------|------------------------------------------------|---------------------------------------------|---|---|
| [Aira-OPT-125M](https://huggingface.co/nicholasKluge/Aira-OPT-125M) | **43.34** | **24.65** | **49.11** | **56.27** | | |
| OPT-125M | 40.29 | 22.78 | 42.88 | 55.21 | | |
| [Aira-OPT-350M](https://huggingface.co/nicholasKluge/Aira-OPT-350M) | **41.56** | **25.00** | **42.13** | **57.55** | | |
| OPT-350M | 40.62 | 23.97 | 41.00 | 56.91 | | |
| [Aira-OPT-1B3](https://huggingface.co/nicholasKluge/Aira-OPT-1B3) | **43.90** | 28.41 | **46.59** | **56.70** | | |
| OPT-1.3b | 40.91 | **29.69** | 38.68 | 54.36 | | |
* Evaluations were performed using the [Language Model Evaluation Harness](https://github.com/EleutherAI/lm-evaluation-harness) (by [EleutherAI](https://www.eleuther.ai/)).
## Cite as 🤗
```latex
@misc{nicholas22aira,
doi = {10.5281/zenodo.6989727},
url = {https://huggingface.co/nicholasKluge/Aira-OPT-1B3},
author = {Nicholas Kluge Corrêa},
title = {Aira},
year = {2023},
publisher = {HuggingFace},
journal = {HuggingFace repository},
}
```
## License
The `Aira-OPT-1B3` is licensed under the OPT-175B License Agreement, Copyright (c) Meta Platforms, Inc. All Rights Reserved. See the [LICENSE](LICENSE.md) file for more details. |