Update README.md
Browse files
README.md
CHANGED
@@ -1,8 +1,81 @@
|
|
1 |
---
|
2 |
language:
|
3 |
- en
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
pipeline_tag: object-detection
|
5 |
|
6 |
---
|
|
|
|
|
|
|
7 |
|
8 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
language:
|
3 |
- en
|
4 |
+
tags:
|
5 |
+
- object-detection
|
6 |
+
- license-plate-detection
|
7 |
+
- vehicle-detection
|
8 |
+
widget:
|
9 |
+
- src: https://drive.google.com/uc?id=1j9VZQ4NDS4gsubFf3m2qQoTMWLk552bQ
|
10 |
+
example_title: "Skoda 1"
|
11 |
+
- src: https://drive.google.com/uc?id=1p9wJIqRz3W50e2f_A0D8ftla8hoXz4T5
|
12 |
+
example_title: "Skoda 2"
|
13 |
+
metrics:
|
14 |
+
- average precision
|
15 |
+
- recall
|
16 |
+
- IOU
|
17 |
pipeline_tag: object-detection
|
18 |
|
19 |
---
|
20 |
+
# YOLOS (small-sized) model
|
21 |
+
This model is a fine-tuned version of [hustvl/yolos-small](https://huggingface.co/hustvl/yolos-small) on the [licesne-plate-recognition](https://app.roboflow.com/objectdetection-jhgr1/license-plates-recognition/2) dataset from Roboflow which contains 5200 images in the training set and 380 in the validation set.
|
22 |
+
The original YOLOS model was fine-tuned on COCO 2017 object detection (118k annotated images).
|
23 |
|
24 |
+
## Model description
|
25 |
+
|
26 |
+
YOLOS is a Vision Transformer (ViT) trained using the DETR loss. Despite its simplicity, a base-sized YOLOS model is able to achieve 42 AP on COCO validation 2017 (similar to DETR and more complex frameworks such as Faster R-CNN).
|
27 |
+
## Intended uses & limitations
|
28 |
+
You can use the raw model for object detection. See the [model hub](https://huggingface.co/models?search=hustvl/yolos) to look for all available YOLOS models.
|
29 |
+
|
30 |
+
### How to use
|
31 |
+
|
32 |
+
Here is how to use this model:
|
33 |
+
|
34 |
+
```python
|
35 |
+
from transformers import YolosFeatureExtractor, YolosForObjectDetection
|
36 |
+
from PIL import Image
|
37 |
+
import requests
|
38 |
+
|
39 |
+
url = 'https://drive.google.com/uc?id=1p9wJIqRz3W50e2f_A0D8ftla8hoXz4T5'
|
40 |
+
image = Image.open(requests.get(url, stream=True).raw)
|
41 |
+
feature_extractor = YolosFeatureExtractor.from_pretrained('nickmuchi/yolos-small-finetuned-license-plate-detection')
|
42 |
+
model = YolosForObjectDetection.from_pretrained('nickmuchi/yolos-small-finetuned-license-plate-detection')
|
43 |
+
inputs = feature_extractor(images=image, return_tensors="pt")
|
44 |
+
outputs = model(**inputs)
|
45 |
+
|
46 |
+
# model predicts bounding boxes and corresponding face mask detection classes
|
47 |
+
logits = outputs.logits
|
48 |
+
bboxes = outputs.pred_boxes
|
49 |
+
```
|
50 |
+
Currently, both the feature extractor and model support PyTorch.
|
51 |
+
|
52 |
+
## Training data
|
53 |
+
|
54 |
+
The YOLOS model was pre-trained on [ImageNet-1k](https://huggingface.co/datasets/imagenet2012) and fine-tuned on [COCO 2017 object detection](https://cocodataset.org/#download), a dataset consisting of 118k/5k annotated images for training/validation respectively.
|
55 |
+
|
56 |
+
### Training
|
57 |
+
|
58 |
+
This model was fine-tuned for 200 epochs on the [licesne-plate-recognition](https://app.roboflow.com/objectdetection-jhgr1/license-plates-recognition/2).
|
59 |
+
|
60 |
+
## Evaluation results
|
61 |
+
|
62 |
+
This model achieves an AP (average precision) of **49.0**.
|
63 |
+
|
64 |
+
Accumulating evaluation results...
|
65 |
+
|
66 |
+
IoU metric: bbox
|
67 |
+
|
68 |
+
Metrics | Metric Parameter | Location | Dets | Value |
|
69 |
+
---------------- | --------------------- | ------------| ------------- | ----- |
|
70 |
+
Average Precision | (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] | 0.490 |
|
71 |
+
Average Precision | (AP) @[ IoU=0.50 | area= all | maxDets=100 ] | 0.792 |
|
72 |
+
Average Precision | (AP) @[ IoU=0.75 | area= all | maxDets=100 ] | 0.585 |
|
73 |
+
Average Precision | (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] | 0.167 |
|
74 |
+
Average Precision | (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] | 0.460 |
|
75 |
+
Average Precision | (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] | 0.824 |
|
76 |
+
Average Recall | (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] | 0.447 |
|
77 |
+
Average Recall | (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] | 0.671 |
|
78 |
+
Average Recall | (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] | 0.676 |
|
79 |
+
Average Recall | (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] | 0.278 |
|
80 |
+
Average Recall | (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] | 0.641 |
|
81 |
+
Average Recall | (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] | 0.890 |
|