nickprock commited on
Commit
35215d6
1 Parent(s): 4eb357a

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +0 -2962
README.md CHANGED
@@ -1,2966 +1,4 @@
1
  ---
2
- tags:
3
- - mteb
4
- model-index:
5
- - name: mmarco-sentence-flare-it
6
- results:
7
- - task:
8
- type: Classification
9
- dataset:
10
- type: mteb/amazon_counterfactual
11
- name: MTEB AmazonCounterfactualClassification (en)
12
- config: en
13
- split: test
14
- revision: e8379541af4e31359cca9fbcf4b00f2671dba205
15
- metrics:
16
- - type: accuracy
17
- value: 66.28358208955223
18
- - type: ap
19
- value: 28.583712225399804
20
- - type: f1
21
- value: 59.773975520814645
22
- - task:
23
- type: Classification
24
- dataset:
25
- type: mteb/amazon_counterfactual
26
- name: MTEB AmazonCounterfactualClassification (de)
27
- config: de
28
- split: test
29
- revision: e8379541af4e31359cca9fbcf4b00f2671dba205
30
- metrics:
31
- - type: accuracy
32
- value: 49.28265524625267
33
- - type: ap
34
- value: 70.12705711793366
35
- - type: f1
36
- value: 46.9152621753021
37
- - task:
38
- type: Classification
39
- dataset:
40
- type: mteb/amazon_counterfactual
41
- name: MTEB AmazonCounterfactualClassification (en-ext)
42
- config: en-ext
43
- split: test
44
- revision: e8379541af4e31359cca9fbcf4b00f2671dba205
45
- metrics:
46
- - type: accuracy
47
- value: 61.13943028485757
48
- - type: ap
49
- value: 15.393299134540122
50
- - type: f1
51
- value: 50.441499676740754
52
- - task:
53
- type: Classification
54
- dataset:
55
- type: mteb/amazon_counterfactual
56
- name: MTEB AmazonCounterfactualClassification (ja)
57
- config: ja
58
- split: test
59
- revision: e8379541af4e31359cca9fbcf4b00f2671dba205
60
- metrics:
61
- - type: accuracy
62
- value: 44.85010706638115
63
- - type: ap
64
- value: 11.24959111812915
65
- - type: f1
66
- value: 38.4896899038441
67
- - task:
68
- type: Classification
69
- dataset:
70
- type: mteb/amazon_polarity
71
- name: MTEB AmazonPolarityClassification
72
- config: default
73
- split: test
74
- revision: e2d317d38cd51312af73b3d32a06d1a08b442046
75
- metrics:
76
- - type: accuracy
77
- value: 53.786350000000006
78
- - type: ap
79
- value: 52.711619488611895
80
- - type: f1
81
- value: 52.08639681443221
82
- - task:
83
- type: Classification
84
- dataset:
85
- type: mteb/amazon_reviews_multi
86
- name: MTEB AmazonReviewsClassification (en)
87
- config: en
88
- split: test
89
- revision: 1399c76144fd37290681b995c656ef9b2e06e26d
90
- metrics:
91
- - type: accuracy
92
- value: 22.954
93
- - type: f1
94
- value: 20.895324325359304
95
- - task:
96
- type: Classification
97
- dataset:
98
- type: mteb/amazon_reviews_multi
99
- name: MTEB AmazonReviewsClassification (de)
100
- config: de
101
- split: test
102
- revision: 1399c76144fd37290681b995c656ef9b2e06e26d
103
- metrics:
104
- - type: accuracy
105
- value: 22.016
106
- - type: f1
107
- value: 20.141551433471214
108
- - task:
109
- type: Classification
110
- dataset:
111
- type: mteb/amazon_reviews_multi
112
- name: MTEB AmazonReviewsClassification (es)
113
- config: es
114
- split: test
115
- revision: 1399c76144fd37290681b995c656ef9b2e06e26d
116
- metrics:
117
- - type: accuracy
118
- value: 23.842000000000002
119
- - type: f1
120
- value: 22.360764368564414
121
- - task:
122
- type: Classification
123
- dataset:
124
- type: mteb/amazon_reviews_multi
125
- name: MTEB AmazonReviewsClassification (fr)
126
- config: fr
127
- split: test
128
- revision: 1399c76144fd37290681b995c656ef9b2e06e26d
129
- metrics:
130
- - type: accuracy
131
- value: 24.534000000000002
132
- - type: f1
133
- value: 23.348432665500937
134
- - task:
135
- type: Classification
136
- dataset:
137
- type: mteb/amazon_reviews_multi
138
- name: MTEB AmazonReviewsClassification (ja)
139
- config: ja
140
- split: test
141
- revision: 1399c76144fd37290681b995c656ef9b2e06e26d
142
- metrics:
143
- - type: accuracy
144
- value: 20.183999999999997
145
- - type: f1
146
- value: 17.025753479408394
147
- - task:
148
- type: Classification
149
- dataset:
150
- type: mteb/amazon_reviews_multi
151
- name: MTEB AmazonReviewsClassification (zh)
152
- config: zh
153
- split: test
154
- revision: 1399c76144fd37290681b995c656ef9b2e06e26d
155
- metrics:
156
- - type: accuracy
157
- value: 20.226000000000003
158
- - type: f1
159
- value: 17.949454130689396
160
- - task:
161
- type: Retrieval
162
- dataset:
163
- type: arguana
164
- name: MTEB ArguAna
165
- config: default
166
- split: test
167
- revision: None
168
- metrics:
169
- - type: map_at_1
170
- value: 0.64
171
- - type: map_at_10
172
- value: 1.109
173
- - type: map_at_100
174
- value: 1.214
175
- - type: map_at_1000
176
- value: 1.273
177
- - type: map_at_3
178
- value: 0.936
179
- - type: map_at_5
180
- value: 1.032
181
- - type: mrr_at_1
182
- value: 0.64
183
- - type: mrr_at_10
184
- value: 1.109
185
- - type: mrr_at_100
186
- value: 1.214
187
- - type: mrr_at_1000
188
- value: 1.273
189
- - type: mrr_at_3
190
- value: 0.936
191
- - type: mrr_at_5
192
- value: 1.032
193
- - type: ndcg_at_1
194
- value: 0.64
195
- - type: ndcg_at_10
196
- value: 1.401
197
- - type: ndcg_at_100
198
- value: 2.106
199
- - type: ndcg_at_1000
200
- value: 4.484
201
- - type: ndcg_at_3
202
- value: 1.042
203
- - type: ndcg_at_5
204
- value: 1.217
205
- - type: precision_at_1
206
- value: 0.64
207
- - type: precision_at_10
208
- value: 0.23500000000000001
209
- - type: precision_at_100
210
- value: 0.061
211
- - type: precision_at_1000
212
- value: 0.027
213
- - type: precision_at_3
214
- value: 0.44999999999999996
215
- - type: precision_at_5
216
- value: 0.356
217
- - type: recall_at_1
218
- value: 0.64
219
- - type: recall_at_10
220
- value: 2.347
221
- - type: recall_at_100
222
- value: 6.117
223
- - type: recall_at_1000
224
- value: 26.671
225
- - type: recall_at_3
226
- value: 1.351
227
- - type: recall_at_5
228
- value: 1.778
229
- - task:
230
- type: Clustering
231
- dataset:
232
- type: mteb/arxiv-clustering-p2p
233
- name: MTEB ArxivClusteringP2P
234
- config: default
235
- split: test
236
- revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
237
- metrics:
238
- - type: v_measure
239
- value: 10.337297492580117
240
- - task:
241
- type: Clustering
242
- dataset:
243
- type: mteb/arxiv-clustering-s2s
244
- name: MTEB ArxivClusteringS2S
245
- config: default
246
- split: test
247
- revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
248
- metrics:
249
- - type: v_measure
250
- value: 8.41067718068448
251
- - task:
252
- type: Reranking
253
- dataset:
254
- type: mteb/askubuntudupquestions-reranking
255
- name: MTEB AskUbuntuDupQuestions
256
- config: default
257
- split: test
258
- revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
259
- metrics:
260
- - type: map
261
- value: 39.45372039138711
262
- - type: mrr
263
- value: 49.48005979861936
264
- - task:
265
- type: STS
266
- dataset:
267
- type: mteb/biosses-sts
268
- name: MTEB BIOSSES
269
- config: default
270
- split: test
271
- revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
272
- metrics:
273
- - type: cos_sim_pearson
274
- value: 2.1060056434908527
275
- - type: cos_sim_spearman
276
- value: -6.396531291473412
277
- - type: euclidean_pearson
278
- value: -1.0319749731423296
279
- - type: euclidean_spearman
280
- value: -5.283855335987313
281
- - type: manhattan_pearson
282
- value: -5.66609061890471
283
- - type: manhattan_spearman
284
- value: -7.173055009189482
285
- - task:
286
- type: Classification
287
- dataset:
288
- type: mteb/banking77
289
- name: MTEB Banking77Classification
290
- config: default
291
- split: test
292
- revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
293
- metrics:
294
- - type: accuracy
295
- value: 17.435064935064933
296
- - type: f1
297
- value: 15.631665237965379
298
- - task:
299
- type: Clustering
300
- dataset:
301
- type: mteb/biorxiv-clustering-p2p
302
- name: MTEB BiorxivClusteringP2P
303
- config: default
304
- split: test
305
- revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
306
- metrics:
307
- - type: v_measure
308
- value: 4.01285243931824
309
- - task:
310
- type: Clustering
311
- dataset:
312
- type: mteb/biorxiv-clustering-s2s
313
- name: MTEB BiorxivClusteringS2S
314
- config: default
315
- split: test
316
- revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
317
- metrics:
318
- - type: v_measure
319
- value: 3.0046123718115685
320
- - task:
321
- type: Retrieval
322
- dataset:
323
- type: BeIR/cqadupstack
324
- name: MTEB CQADupstackAndroidRetrieval
325
- config: default
326
- split: test
327
- revision: None
328
- metrics:
329
- - type: map_at_1
330
- value: 0.001
331
- - type: map_at_10
332
- value: 0.023
333
- - type: map_at_100
334
- value: 0.034999999999999996
335
- - type: map_at_1000
336
- value: 0.042
337
- - type: map_at_3
338
- value: 0.001
339
- - type: map_at_5
340
- value: 0.001
341
- - type: mrr_at_1
342
- value: 0.14300000000000002
343
- - type: mrr_at_10
344
- value: 0.173
345
- - type: mrr_at_100
346
- value: 0.203
347
- - type: mrr_at_1000
348
- value: 0.216
349
- - type: mrr_at_3
350
- value: 0.14300000000000002
351
- - type: mrr_at_5
352
- value: 0.14300000000000002
353
- - type: ndcg_at_1
354
- value: 0.14300000000000002
355
- - type: ndcg_at_10
356
- value: 0.11
357
- - type: ndcg_at_100
358
- value: 0.174
359
- - type: ndcg_at_1000
360
- value: 0.526
361
- - type: ndcg_at_3
362
- value: 0.067
363
- - type: ndcg_at_5
364
- value: 0.049
365
- - type: precision_at_1
366
- value: 0.14300000000000002
367
- - type: precision_at_10
368
- value: 0.056999999999999995
369
- - type: precision_at_100
370
- value: 0.02
371
- - type: precision_at_1000
372
- value: 0.01
373
- - type: precision_at_3
374
- value: 0.048
375
- - type: precision_at_5
376
- value: 0.029
377
- - type: recall_at_1
378
- value: 0.001
379
- - type: recall_at_10
380
- value: 0.216
381
- - type: recall_at_100
382
- value: 0.629
383
- - type: recall_at_1000
384
- value: 3.1940000000000004
385
- - type: recall_at_3
386
- value: 0.001
387
- - type: recall_at_5
388
- value: 0.001
389
- - task:
390
- type: Retrieval
391
- dataset:
392
- type: BeIR/cqadupstack
393
- name: MTEB CQADupstackEnglishRetrieval
394
- config: default
395
- split: test
396
- revision: None
397
- metrics:
398
- - type: map_at_1
399
- value: 0.0
400
- - type: map_at_10
401
- value: 0.04
402
- - type: map_at_100
403
- value: 0.058
404
- - type: map_at_1000
405
- value: 0.065
406
- - type: map_at_3
407
- value: 0.033
408
- - type: map_at_5
409
- value: 0.04
410
- - type: mrr_at_1
411
- value: 0.0
412
- - type: mrr_at_10
413
- value: 0.066
414
- - type: mrr_at_100
415
- value: 0.099
416
- - type: mrr_at_1000
417
- value: 0.11
418
- - type: mrr_at_3
419
- value: 0.053
420
- - type: mrr_at_5
421
- value: 0.066
422
- - type: ndcg_at_1
423
- value: 0.0
424
- - type: ndcg_at_10
425
- value: 0.062
426
- - type: ndcg_at_100
427
- value: 0.182
428
- - type: ndcg_at_1000
429
- value: 0.494
430
- - type: ndcg_at_3
431
- value: 0.055
432
- - type: ndcg_at_5
433
- value: 0.066
434
- - type: precision_at_1
435
- value: 0.0
436
- - type: precision_at_10
437
- value: 0.019
438
- - type: precision_at_100
439
- value: 0.012
440
- - type: precision_at_1000
441
- value: 0.006
442
- - type: precision_at_3
443
- value: 0.042
444
- - type: precision_at_5
445
- value: 0.038
446
- - type: recall_at_1
447
- value: 0.0
448
- - type: recall_at_10
449
- value: 0.1
450
- - type: recall_at_100
451
- value: 0.626
452
- - type: recall_at_1000
453
- value: 3.012
454
- - type: recall_at_3
455
- value: 0.068
456
- - type: recall_at_5
457
- value: 0.1
458
- - task:
459
- type: Retrieval
460
- dataset:
461
- type: BeIR/cqadupstack
462
- name: MTEB CQADupstackGamingRetrieval
463
- config: default
464
- split: test
465
- revision: None
466
- metrics:
467
- - type: map_at_1
468
- value: 0.0
469
- - type: map_at_10
470
- value: 0.01
471
- - type: map_at_100
472
- value: 0.019
473
- - type: map_at_1000
474
- value: 0.026
475
- - type: map_at_3
476
- value: 0.0
477
- - type: map_at_5
478
- value: 0.0
479
- - type: mrr_at_1
480
- value: 0.0
481
- - type: mrr_at_10
482
- value: 0.01
483
- - type: mrr_at_100
484
- value: 0.019
485
- - type: mrr_at_1000
486
- value: 0.027
487
- - type: mrr_at_3
488
- value: 0.0
489
- - type: mrr_at_5
490
- value: 0.0
491
- - type: ndcg_at_1
492
- value: 0.0
493
- - type: ndcg_at_10
494
- value: 0.022000000000000002
495
- - type: ndcg_at_100
496
- value: 0.09
497
- - type: ndcg_at_1000
498
- value: 0.35500000000000004
499
- - type: ndcg_at_3
500
- value: 0.0
501
- - type: ndcg_at_5
502
- value: 0.0
503
- - type: precision_at_1
504
- value: 0.0
505
- - type: precision_at_10
506
- value: 0.006
507
- - type: precision_at_100
508
- value: 0.004
509
- - type: precision_at_1000
510
- value: 0.003
511
- - type: precision_at_3
512
- value: 0.0
513
- - type: precision_at_5
514
- value: 0.0
515
- - type: recall_at_1
516
- value: 0.0
517
- - type: recall_at_10
518
- value: 0.063
519
- - type: recall_at_100
520
- value: 0.439
521
- - type: recall_at_1000
522
- value: 2.576
523
- - type: recall_at_3
524
- value: 0.0
525
- - type: recall_at_5
526
- value: 0.0
527
- - task:
528
- type: Retrieval
529
- dataset:
530
- type: BeIR/cqadupstack
531
- name: MTEB CQADupstackGisRetrieval
532
- config: default
533
- split: test
534
- revision: None
535
- metrics:
536
- - type: map_at_1
537
- value: 0.22599999999999998
538
- - type: map_at_10
539
- value: 0.22599999999999998
540
- - type: map_at_100
541
- value: 0.23500000000000001
542
- - type: map_at_1000
543
- value: 0.241
544
- - type: map_at_3
545
- value: 0.22599999999999998
546
- - type: map_at_5
547
- value: 0.22599999999999998
548
- - type: mrr_at_1
549
- value: 0.22599999999999998
550
- - type: mrr_at_10
551
- value: 0.22599999999999998
552
- - type: mrr_at_100
553
- value: 0.23800000000000002
554
- - type: mrr_at_1000
555
- value: 0.244
556
- - type: mrr_at_3
557
- value: 0.22599999999999998
558
- - type: mrr_at_5
559
- value: 0.22599999999999998
560
- - type: ndcg_at_1
561
- value: 0.22599999999999998
562
- - type: ndcg_at_10
563
- value: 0.22599999999999998
564
- - type: ndcg_at_100
565
- value: 0.317
566
- - type: ndcg_at_1000
567
- value: 0.584
568
- - type: ndcg_at_3
569
- value: 0.22599999999999998
570
- - type: ndcg_at_5
571
- value: 0.22599999999999998
572
- - type: precision_at_1
573
- value: 0.22599999999999998
574
- - type: precision_at_10
575
- value: 0.023
576
- - type: precision_at_100
577
- value: 0.009000000000000001
578
- - type: precision_at_1000
579
- value: 0.004
580
- - type: precision_at_3
581
- value: 0.075
582
- - type: precision_at_5
583
- value: 0.045
584
- - type: recall_at_1
585
- value: 0.22599999999999998
586
- - type: recall_at_10
587
- value: 0.22599999999999998
588
- - type: recall_at_100
589
- value: 0.732
590
- - type: recall_at_1000
591
- value: 2.951
592
- - type: recall_at_3
593
- value: 0.22599999999999998
594
- - type: recall_at_5
595
- value: 0.22599999999999998
596
- - task:
597
- type: Retrieval
598
- dataset:
599
- type: BeIR/cqadupstack
600
- name: MTEB CQADupstackMathematicaRetrieval
601
- config: default
602
- split: test
603
- revision: None
604
- metrics:
605
- - type: map_at_1
606
- value: 0.062
607
- - type: map_at_10
608
- value: 0.062
609
- - type: map_at_100
610
- value: 0.08800000000000001
611
- - type: map_at_1000
612
- value: 0.1
613
- - type: map_at_3
614
- value: 0.062
615
- - type: map_at_5
616
- value: 0.062
617
- - type: mrr_at_1
618
- value: 0.124
619
- - type: mrr_at_10
620
- value: 0.124
621
- - type: mrr_at_100
622
- value: 0.173
623
- - type: mrr_at_1000
624
- value: 0.191
625
- - type: mrr_at_3
626
- value: 0.124
627
- - type: mrr_at_5
628
- value: 0.124
629
- - type: ndcg_at_1
630
- value: 0.124
631
- - type: ndcg_at_10
632
- value: 0.076
633
- - type: ndcg_at_100
634
- value: 0.27
635
- - type: ndcg_at_1000
636
- value: 0.7849999999999999
637
- - type: ndcg_at_3
638
- value: 0.076
639
- - type: ndcg_at_5
640
- value: 0.076
641
- - type: precision_at_1
642
- value: 0.124
643
- - type: precision_at_10
644
- value: 0.012
645
- - type: precision_at_100
646
- value: 0.02
647
- - type: precision_at_1000
648
- value: 0.009000000000000001
649
- - type: precision_at_3
650
- value: 0.041
651
- - type: precision_at_5
652
- value: 0.025
653
- - type: recall_at_1
654
- value: 0.062
655
- - type: recall_at_10
656
- value: 0.062
657
- - type: recall_at_100
658
- value: 0.9119999999999999
659
- - type: recall_at_1000
660
- value: 4.809
661
- - type: recall_at_3
662
- value: 0.062
663
- - type: recall_at_5
664
- value: 0.062
665
- - task:
666
- type: Retrieval
667
- dataset:
668
- type: BeIR/cqadupstack
669
- name: MTEB CQADupstackPhysicsRetrieval
670
- config: default
671
- split: test
672
- revision: None
673
- metrics:
674
- - type: map_at_1
675
- value: 0.0
676
- - type: map_at_10
677
- value: 0.043
678
- - type: map_at_100
679
- value: 0.061
680
- - type: map_at_1000
681
- value: 0.06999999999999999
682
- - type: map_at_3
683
- value: 0.0
684
- - type: map_at_5
685
- value: 0.043
686
- - type: mrr_at_1
687
- value: 0.0
688
- - type: mrr_at_10
689
- value: 0.043
690
- - type: mrr_at_100
691
- value: 0.06899999999999999
692
- - type: mrr_at_1000
693
- value: 0.079
694
- - type: mrr_at_3
695
- value: 0.0
696
- - type: mrr_at_5
697
- value: 0.043
698
- - type: ndcg_at_1
699
- value: 0.0
700
- - type: ndcg_at_10
701
- value: 0.079
702
- - type: ndcg_at_100
703
- value: 0.22599999999999998
704
- - type: ndcg_at_1000
705
- value: 0.5579999999999999
706
- - type: ndcg_at_3
707
- value: 0.0
708
- - type: ndcg_at_5
709
- value: 0.079
710
- - type: precision_at_1
711
- value: 0.0
712
- - type: precision_at_10
713
- value: 0.019
714
- - type: precision_at_100
715
- value: 0.013
716
- - type: precision_at_1000
717
- value: 0.005
718
- - type: precision_at_3
719
- value: 0.0
720
- - type: precision_at_5
721
- value: 0.038
722
- - type: recall_at_1
723
- value: 0.0
724
- - type: recall_at_10
725
- value: 0.192
726
- - type: recall_at_100
727
- value: 0.918
728
- - type: recall_at_1000
729
- value: 3.5909999999999997
730
- - type: recall_at_3
731
- value: 0.0
732
- - type: recall_at_5
733
- value: 0.192
734
- - task:
735
- type: Retrieval
736
- dataset:
737
- type: BeIR/cqadupstack
738
- name: MTEB CQADupstackProgrammersRetrieval
739
- config: default
740
- split: test
741
- revision: None
742
- metrics:
743
- - type: map_at_1
744
- value: 0.0
745
- - type: map_at_10
746
- value: 0.04
747
- - type: map_at_100
748
- value: 0.044000000000000004
749
- - type: map_at_1000
750
- value: 0.052
751
- - type: map_at_3
752
- value: 0.038
753
- - type: map_at_5
754
- value: 0.038
755
- - type: mrr_at_1
756
- value: 0.0
757
- - type: mrr_at_10
758
- value: 0.054
759
- - type: mrr_at_100
760
- value: 0.07200000000000001
761
- - type: mrr_at_1000
762
- value: 0.084
763
- - type: mrr_at_3
764
- value: 0.038
765
- - type: mrr_at_5
766
- value: 0.038
767
- - type: ndcg_at_1
768
- value: 0.0
769
- - type: ndcg_at_10
770
- value: 0.067
771
- - type: ndcg_at_100
772
- value: 0.10300000000000001
773
- - type: ndcg_at_1000
774
- value: 0.488
775
- - type: ndcg_at_3
776
- value: 0.056999999999999995
777
- - type: ndcg_at_5
778
- value: 0.056999999999999995
779
- - type: precision_at_1
780
- value: 0.0
781
- - type: precision_at_10
782
- value: 0.023
783
- - type: precision_at_100
784
- value: 0.006999999999999999
785
- - type: precision_at_1000
786
- value: 0.006
787
- - type: precision_at_3
788
- value: 0.038
789
- - type: precision_at_5
790
- value: 0.023
791
- - type: recall_at_1
792
- value: 0.0
793
- - type: recall_at_10
794
- value: 0.128
795
- - type: recall_at_100
796
- value: 0.248
797
- - type: recall_at_1000
798
- value: 3.36
799
- - type: recall_at_3
800
- value: 0.11399999999999999
801
- - type: recall_at_5
802
- value: 0.11399999999999999
803
- - task:
804
- type: Retrieval
805
- dataset:
806
- type: BeIR/cqadupstack
807
- name: MTEB CQADupstackStatsRetrieval
808
- config: default
809
- split: test
810
- revision: None
811
- metrics:
812
- - type: map_at_1
813
- value: 0.0
814
- - type: map_at_10
815
- value: 0.0
816
- - type: map_at_100
817
- value: 0.013999999999999999
818
- - type: map_at_1000
819
- value: 0.023
820
- - type: map_at_3
821
- value: 0.0
822
- - type: map_at_5
823
- value: 0.0
824
- - type: mrr_at_1
825
- value: 0.0
826
- - type: mrr_at_10
827
- value: 0.0
828
- - type: mrr_at_100
829
- value: 0.03
830
- - type: mrr_at_1000
831
- value: 0.045
832
- - type: mrr_at_3
833
- value: 0.0
834
- - type: mrr_at_5
835
- value: 0.0
836
- - type: ndcg_at_1
837
- value: 0.0
838
- - type: ndcg_at_10
839
- value: 0.0
840
- - type: ndcg_at_100
841
- value: 0.066
842
- - type: ndcg_at_1000
843
- value: 0.445
844
- - type: ndcg_at_3
845
- value: 0.0
846
- - type: ndcg_at_5
847
- value: 0.0
848
- - type: precision_at_1
849
- value: 0.0
850
- - type: precision_at_10
851
- value: 0.0
852
- - type: precision_at_100
853
- value: 0.005
854
- - type: precision_at_1000
855
- value: 0.005
856
- - type: precision_at_3
857
- value: 0.0
858
- - type: precision_at_5
859
- value: 0.0
860
- - type: recall_at_1
861
- value: 0.0
862
- - type: recall_at_10
863
- value: 0.0
864
- - type: recall_at_100
865
- value: 0.24
866
- - type: recall_at_1000
867
- value: 3.1559999999999997
868
- - type: recall_at_3
869
- value: 0.0
870
- - type: recall_at_5
871
- value: 0.0
872
- - task:
873
- type: Retrieval
874
- dataset:
875
- type: BeIR/cqadupstack
876
- name: MTEB CQADupstackTexRetrieval
877
- config: default
878
- split: test
879
- revision: None
880
- metrics:
881
- - type: map_at_1
882
- value: 0.0
883
- - type: map_at_10
884
- value: 0.0
885
- - type: map_at_100
886
- value: 0.006999999999999999
887
- - type: map_at_1000
888
- value: 0.012
889
- - type: map_at_3
890
- value: 0.0
891
- - type: map_at_5
892
- value: 0.0
893
- - type: mrr_at_1
894
- value: 0.0
895
- - type: mrr_at_10
896
- value: 0.0
897
- - type: mrr_at_100
898
- value: 0.011000000000000001
899
- - type: mrr_at_1000
900
- value: 0.018000000000000002
901
- - type: mrr_at_3
902
- value: 0.0
903
- - type: mrr_at_5
904
- value: 0.0
905
- - type: ndcg_at_1
906
- value: 0.0
907
- - type: ndcg_at_10
908
- value: 0.0
909
- - type: ndcg_at_100
910
- value: 0.055
911
- - type: ndcg_at_1000
912
- value: 0.254
913
- - type: ndcg_at_3
914
- value: 0.0
915
- - type: ndcg_at_5
916
- value: 0.0
917
- - type: precision_at_1
918
- value: 0.0
919
- - type: precision_at_10
920
- value: 0.0
921
- - type: precision_at_100
922
- value: 0.004
923
- - type: precision_at_1000
924
- value: 0.003
925
- - type: precision_at_3
926
- value: 0.0
927
- - type: precision_at_5
928
- value: 0.0
929
- - type: recall_at_1
930
- value: 0.0
931
- - type: recall_at_10
932
- value: 0.0
933
- - type: recall_at_100
934
- value: 0.27599999999999997
935
- - type: recall_at_1000
936
- value: 1.828
937
- - type: recall_at_3
938
- value: 0.0
939
- - type: recall_at_5
940
- value: 0.0
941
- - task:
942
- type: Retrieval
943
- dataset:
944
- type: BeIR/cqadupstack
945
- name: MTEB CQADupstackUnixRetrieval
946
- config: default
947
- split: test
948
- revision: None
949
- metrics:
950
- - type: map_at_1
951
- value: 0.0
952
- - type: map_at_10
953
- value: 0.023
954
- - type: map_at_100
955
- value: 0.031
956
- - type: map_at_1000
957
- value: 0.038
958
- - type: map_at_3
959
- value: 0.0
960
- - type: map_at_5
961
- value: 0.023
962
- - type: mrr_at_1
963
- value: 0.0
964
- - type: mrr_at_10
965
- value: 0.023
966
- - type: mrr_at_100
967
- value: 0.039
968
- - type: mrr_at_1000
969
- value: 0.048
970
- - type: mrr_at_3
971
- value: 0.0
972
- - type: mrr_at_5
973
- value: 0.023
974
- - type: ndcg_at_1
975
- value: 0.0
976
- - type: ndcg_at_10
977
- value: 0.04
978
- - type: ndcg_at_100
979
- value: 0.133
980
- - type: ndcg_at_1000
981
- value: 0.395
982
- - type: ndcg_at_3
983
- value: 0.0
984
- - type: ndcg_at_5
985
- value: 0.04
986
- - type: precision_at_1
987
- value: 0.0
988
- - type: precision_at_10
989
- value: 0.009000000000000001
990
- - type: precision_at_100
991
- value: 0.009000000000000001
992
- - type: precision_at_1000
993
- value: 0.004
994
- - type: precision_at_3
995
- value: 0.0
996
- - type: precision_at_5
997
- value: 0.019
998
- - type: recall_at_1
999
- value: 0.0
1000
- - type: recall_at_10
1001
- value: 0.093
1002
- - type: recall_at_100
1003
- value: 0.598
1004
- - type: recall_at_1000
1005
- value: 2.59
1006
- - type: recall_at_3
1007
- value: 0.0
1008
- - type: recall_at_5
1009
- value: 0.093
1010
- - task:
1011
- type: Retrieval
1012
- dataset:
1013
- type: BeIR/cqadupstack
1014
- name: MTEB CQADupstackWebmastersRetrieval
1015
- config: default
1016
- split: test
1017
- revision: None
1018
- metrics:
1019
- - type: map_at_1
1020
- value: 0.0
1021
- - type: map_at_10
1022
- value: 0.0
1023
- - type: map_at_100
1024
- value: 0.015
1025
- - type: map_at_1000
1026
- value: 0.03
1027
- - type: map_at_3
1028
- value: 0.0
1029
- - type: map_at_5
1030
- value: 0.0
1031
- - type: mrr_at_1
1032
- value: 0.0
1033
- - type: mrr_at_10
1034
- value: 0.0
1035
- - type: mrr_at_100
1036
- value: 0.062
1037
- - type: mrr_at_1000
1038
- value: 0.083
1039
- - type: mrr_at_3
1040
- value: 0.0
1041
- - type: mrr_at_5
1042
- value: 0.0
1043
- - type: ndcg_at_1
1044
- value: 0.0
1045
- - type: ndcg_at_10
1046
- value: 0.0
1047
- - type: ndcg_at_100
1048
- value: 0.17700000000000002
1049
- - type: ndcg_at_1000
1050
- value: 0.9299999999999999
1051
- - type: ndcg_at_3
1052
- value: 0.0
1053
- - type: ndcg_at_5
1054
- value: 0.0
1055
- - type: precision_at_1
1056
- value: 0.0
1057
- - type: precision_at_10
1058
- value: 0.0
1059
- - type: precision_at_100
1060
- value: 0.027999999999999997
1061
- - type: precision_at_1000
1062
- value: 0.023
1063
- - type: precision_at_3
1064
- value: 0.0
1065
- - type: precision_at_5
1066
- value: 0.0
1067
- - type: recall_at_1
1068
- value: 0.0
1069
- - type: recall_at_10
1070
- value: 0.0
1071
- - type: recall_at_100
1072
- value: 0.894
1073
- - type: recall_at_1000
1074
- value: 6.639
1075
- - type: recall_at_3
1076
- value: 0.0
1077
- - type: recall_at_5
1078
- value: 0.0
1079
- - task:
1080
- type: Retrieval
1081
- dataset:
1082
- type: BeIR/cqadupstack
1083
- name: MTEB CQADupstackWordpressRetrieval
1084
- config: default
1085
- split: test
1086
- revision: None
1087
- metrics:
1088
- - type: map_at_1
1089
- value: 0.0
1090
- - type: map_at_10
1091
- value: 0.0
1092
- - type: map_at_100
1093
- value: 0.0
1094
- - type: map_at_1000
1095
- value: 0.006999999999999999
1096
- - type: map_at_3
1097
- value: 0.0
1098
- - type: map_at_5
1099
- value: 0.0
1100
- - type: mrr_at_1
1101
- value: 0.0
1102
- - type: mrr_at_10
1103
- value: 0.0
1104
- - type: mrr_at_100
1105
- value: 0.0
1106
- - type: mrr_at_1000
1107
- value: 0.009000000000000001
1108
- - type: mrr_at_3
1109
- value: 0.0
1110
- - type: mrr_at_5
1111
- value: 0.0
1112
- - type: ndcg_at_1
1113
- value: 0.0
1114
- - type: ndcg_at_10
1115
- value: 0.0
1116
- - type: ndcg_at_100
1117
- value: 0.0
1118
- - type: ndcg_at_1000
1119
- value: 0.35200000000000004
1120
- - type: ndcg_at_3
1121
- value: 0.0
1122
- - type: ndcg_at_5
1123
- value: 0.0
1124
- - type: precision_at_1
1125
- value: 0.0
1126
- - type: precision_at_10
1127
- value: 0.0
1128
- - type: precision_at_100
1129
- value: 0.0
1130
- - type: precision_at_1000
1131
- value: 0.004
1132
- - type: precision_at_3
1133
- value: 0.0
1134
- - type: precision_at_5
1135
- value: 0.0
1136
- - type: recall_at_1
1137
- value: 0.0
1138
- - type: recall_at_10
1139
- value: 0.0
1140
- - type: recall_at_100
1141
- value: 0.0
1142
- - type: recall_at_1000
1143
- value: 2.864
1144
- - type: recall_at_3
1145
- value: 0.0
1146
- - type: recall_at_5
1147
- value: 0.0
1148
- - task:
1149
- type: Retrieval
1150
- dataset:
1151
- type: climate-fever
1152
- name: MTEB ClimateFEVER
1153
- config: default
1154
- split: test
1155
- revision: None
1156
- metrics:
1157
- - type: map_at_1
1158
- value: 0.033
1159
- - type: map_at_10
1160
- value: 0.034
1161
- - type: map_at_100
1162
- value: 0.037
1163
- - type: map_at_1000
1164
- value: 0.039
1165
- - type: map_at_3
1166
- value: 0.033
1167
- - type: map_at_5
1168
- value: 0.033
1169
- - type: mrr_at_1
1170
- value: 0.065
1171
- - type: mrr_at_10
1172
- value: 0.07200000000000001
1173
- - type: mrr_at_100
1174
- value: 0.08
1175
- - type: mrr_at_1000
1176
- value: 0.086
1177
- - type: mrr_at_3
1178
- value: 0.065
1179
- - type: mrr_at_5
1180
- value: 0.065
1181
- - type: ndcg_at_1
1182
- value: 0.065
1183
- - type: ndcg_at_10
1184
- value: 0.047
1185
- - type: ndcg_at_100
1186
- value: 0.079
1187
- - type: ndcg_at_1000
1188
- value: 0.19
1189
- - type: ndcg_at_3
1190
- value: 0.04
1191
- - type: ndcg_at_5
1192
- value: 0.04
1193
- - type: precision_at_1
1194
- value: 0.065
1195
- - type: precision_at_10
1196
- value: 0.013
1197
- - type: precision_at_100
1198
- value: 0.005
1199
- - type: precision_at_1000
1200
- value: 0.002
1201
- - type: precision_at_3
1202
- value: 0.022000000000000002
1203
- - type: precision_at_5
1204
- value: 0.013
1205
- - type: recall_at_1
1206
- value: 0.033
1207
- - type: recall_at_10
1208
- value: 0.049
1209
- - type: recall_at_100
1210
- value: 0.186
1211
- - type: recall_at_1000
1212
- value: 0.9199999999999999
1213
- - type: recall_at_3
1214
- value: 0.033
1215
- - type: recall_at_5
1216
- value: 0.033
1217
- - task:
1218
- type: Retrieval
1219
- dataset:
1220
- type: dbpedia-entity
1221
- name: MTEB DBPedia
1222
- config: default
1223
- split: test
1224
- revision: None
1225
- metrics:
1226
- - type: map_at_1
1227
- value: 0.0
1228
- - type: map_at_10
1229
- value: 0.0
1230
- - type: map_at_100
1231
- value: 0.008
1232
- - type: map_at_1000
1233
- value: 0.008
1234
- - type: map_at_3
1235
- value: 0.0
1236
- - type: map_at_5
1237
- value: 0.0
1238
- - type: mrr_at_1
1239
- value: 0.0
1240
- - type: mrr_at_10
1241
- value: 0.0
1242
- - type: mrr_at_100
1243
- value: 0.066
1244
- - type: mrr_at_1000
1245
- value: 0.077
1246
- - type: mrr_at_3
1247
- value: 0.0
1248
- - type: mrr_at_5
1249
- value: 0.0
1250
- - type: ndcg_at_1
1251
- value: 0.0
1252
- - type: ndcg_at_10
1253
- value: 0.0
1254
- - type: ndcg_at_100
1255
- value: 0.08
1256
- - type: ndcg_at_1000
1257
- value: 0.131
1258
- - type: ndcg_at_3
1259
- value: 0.0
1260
- - type: ndcg_at_5
1261
- value: 0.0
1262
- - type: precision_at_1
1263
- value: 0.0
1264
- - type: precision_at_10
1265
- value: 0.0
1266
- - type: precision_at_100
1267
- value: 0.018000000000000002
1268
- - type: precision_at_1000
1269
- value: 0.006999999999999999
1270
- - type: precision_at_3
1271
- value: 0.0
1272
- - type: precision_at_5
1273
- value: 0.0
1274
- - type: recall_at_1
1275
- value: 0.0
1276
- - type: recall_at_10
1277
- value: 0.0
1278
- - type: recall_at_100
1279
- value: 0.133
1280
- - type: recall_at_1000
1281
- value: 0.293
1282
- - type: recall_at_3
1283
- value: 0.0
1284
- - type: recall_at_5
1285
- value: 0.0
1286
- - task:
1287
- type: Classification
1288
- dataset:
1289
- type: mteb/emotion
1290
- name: MTEB EmotionClassification
1291
- config: default
1292
- split: test
1293
- revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
1294
- metrics:
1295
- - type: accuracy
1296
- value: 19.57
1297
- - type: f1
1298
- value: 16.51103261738041
1299
- - task:
1300
- type: Retrieval
1301
- dataset:
1302
- type: fever
1303
- name: MTEB FEVER
1304
- config: default
1305
- split: test
1306
- revision: None
1307
- metrics:
1308
- - type: map_at_1
1309
- value: 0.068
1310
- - type: map_at_10
1311
- value: 0.104
1312
- - type: map_at_100
1313
- value: 0.11
1314
- - type: map_at_1000
1315
- value: 0.11299999999999999
1316
- - type: map_at_3
1317
- value: 0.095
1318
- - type: map_at_5
1319
- value: 0.098
1320
- - type: mrr_at_1
1321
- value: 0.075
1322
- - type: mrr_at_10
1323
- value: 0.11299999999999999
1324
- - type: mrr_at_100
1325
- value: 0.11900000000000001
1326
- - type: mrr_at_1000
1327
- value: 0.123
1328
- - type: mrr_at_3
1329
- value: 0.10300000000000001
1330
- - type: mrr_at_5
1331
- value: 0.106
1332
- - type: ndcg_at_1
1333
- value: 0.075
1334
- - type: ndcg_at_10
1335
- value: 0.128
1336
- - type: ndcg_at_100
1337
- value: 0.167
1338
- - type: ndcg_at_1000
1339
- value: 0.291
1340
- - type: ndcg_at_3
1341
- value: 0.105
1342
- - type: ndcg_at_5
1343
- value: 0.11100000000000002
1344
- - type: precision_at_1
1345
- value: 0.075
1346
- - type: precision_at_10
1347
- value: 0.021
1348
- - type: precision_at_100
1349
- value: 0.004
1350
- - type: precision_at_1000
1351
- value: 0.002
1352
- - type: precision_at_3
1353
- value: 0.045
1354
- - type: precision_at_5
1355
- value: 0.03
1356
- - type: recall_at_1
1357
- value: 0.068
1358
- - type: recall_at_10
1359
- value: 0.19499999999999998
1360
- - type: recall_at_100
1361
- value: 0.40299999999999997
1362
- - type: recall_at_1000
1363
- value: 1.448
1364
- - type: recall_at_3
1365
- value: 0.128
1366
- - type: recall_at_5
1367
- value: 0.14300000000000002
1368
- - task:
1369
- type: Retrieval
1370
- dataset:
1371
- type: fiqa
1372
- name: MTEB FiQA2018
1373
- config: default
1374
- split: test
1375
- revision: None
1376
- metrics:
1377
- - type: map_at_1
1378
- value: 0.0
1379
- - type: map_at_10
1380
- value: 0.0
1381
- - type: map_at_100
1382
- value: 0.005
1383
- - type: map_at_1000
1384
- value: 0.01
1385
- - type: map_at_3
1386
- value: 0.0
1387
- - type: map_at_5
1388
- value: 0.0
1389
- - type: mrr_at_1
1390
- value: 0.0
1391
- - type: mrr_at_10
1392
- value: 0.0
1393
- - type: mrr_at_100
1394
- value: 0.011000000000000001
1395
- - type: mrr_at_1000
1396
- value: 0.026
1397
- - type: mrr_at_3
1398
- value: 0.0
1399
- - type: mrr_at_5
1400
- value: 0.0
1401
- - type: ndcg_at_1
1402
- value: 0.0
1403
- - type: ndcg_at_10
1404
- value: 0.0
1405
- - type: ndcg_at_100
1406
- value: 0.06999999999999999
1407
- - type: ndcg_at_1000
1408
- value: 0.38899999999999996
1409
- - type: ndcg_at_3
1410
- value: 0.0
1411
- - type: ndcg_at_5
1412
- value: 0.0
1413
- - type: precision_at_1
1414
- value: 0.0
1415
- - type: precision_at_10
1416
- value: 0.0
1417
- - type: precision_at_100
1418
- value: 0.008
1419
- - type: precision_at_1000
1420
- value: 0.006999999999999999
1421
- - type: precision_at_3
1422
- value: 0.0
1423
- - type: precision_at_5
1424
- value: 0.0
1425
- - type: recall_at_1
1426
- value: 0.0
1427
- - type: recall_at_10
1428
- value: 0.0
1429
- - type: recall_at_100
1430
- value: 0.383
1431
- - type: recall_at_1000
1432
- value: 2.435
1433
- - type: recall_at_3
1434
- value: 0.0
1435
- - type: recall_at_5
1436
- value: 0.0
1437
- - task:
1438
- type: Retrieval
1439
- dataset:
1440
- type: hotpotqa
1441
- name: MTEB HotpotQA
1442
- config: default
1443
- split: test
1444
- revision: None
1445
- metrics:
1446
- - type: map_at_1
1447
- value: 0.013999999999999999
1448
- - type: map_at_10
1449
- value: 0.018000000000000002
1450
- - type: map_at_100
1451
- value: 0.019
1452
- - type: map_at_1000
1453
- value: 0.02
1454
- - type: map_at_3
1455
- value: 0.016
1456
- - type: map_at_5
1457
- value: 0.016
1458
- - type: mrr_at_1
1459
- value: 0.027
1460
- - type: mrr_at_10
1461
- value: 0.034999999999999996
1462
- - type: mrr_at_100
1463
- value: 0.038
1464
- - type: mrr_at_1000
1465
- value: 0.039
1466
- - type: mrr_at_3
1467
- value: 0.032
1468
- - type: mrr_at_5
1469
- value: 0.032
1470
- - type: ndcg_at_1
1471
- value: 0.027
1472
- - type: ndcg_at_10
1473
- value: 0.026
1474
- - type: ndcg_at_100
1475
- value: 0.038
1476
- - type: ndcg_at_1000
1477
- value: 0.064
1478
- - type: ndcg_at_3
1479
- value: 0.021
1480
- - type: ndcg_at_5
1481
- value: 0.021
1482
- - type: precision_at_1
1483
- value: 0.027
1484
- - type: precision_at_10
1485
- value: 0.006999999999999999
1486
- - type: precision_at_100
1487
- value: 0.002
1488
- - type: precision_at_1000
1489
- value: 0.001
1490
- - type: precision_at_3
1491
- value: 0.013999999999999999
1492
- - type: precision_at_5
1493
- value: 0.008
1494
- - type: recall_at_1
1495
- value: 0.013999999999999999
1496
- - type: recall_at_10
1497
- value: 0.034
1498
- - type: recall_at_100
1499
- value: 0.08800000000000001
1500
- - type: recall_at_1000
1501
- value: 0.27
1502
- - type: recall_at_3
1503
- value: 0.02
1504
- - type: recall_at_5
1505
- value: 0.02
1506
- - task:
1507
- type: Classification
1508
- dataset:
1509
- type: mteb/imdb
1510
- name: MTEB ImdbClassification
1511
- config: default
1512
- split: test
1513
- revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
1514
- metrics:
1515
- - type: accuracy
1516
- value: 55.4624
1517
- - type: ap
1518
- value: 53.20545827965495
1519
- - type: f1
1520
- value: 54.40019244805333
1521
- - task:
1522
- type: Retrieval
1523
- dataset:
1524
- type: msmarco
1525
- name: MTEB MSMARCO
1526
- config: default
1527
- split: dev
1528
- revision: None
1529
- metrics:
1530
- - type: map_at_1
1531
- value: 0.086
1532
- - type: map_at_10
1533
- value: 0.109
1534
- - type: map_at_100
1535
- value: 0.11499999999999999
1536
- - type: map_at_1000
1537
- value: 0.11800000000000001
1538
- - type: map_at_3
1539
- value: 0.091
1540
- - type: map_at_5
1541
- value: 0.101
1542
- - type: mrr_at_1
1543
- value: 0.086
1544
- - type: mrr_at_10
1545
- value: 0.109
1546
- - type: mrr_at_100
1547
- value: 0.11499999999999999
1548
- - type: mrr_at_1000
1549
- value: 0.11800000000000001
1550
- - type: mrr_at_3
1551
- value: 0.091
1552
- - type: mrr_at_5
1553
- value: 0.101
1554
- - type: ndcg_at_1
1555
- value: 0.086
1556
- - type: ndcg_at_10
1557
- value: 0.133
1558
- - type: ndcg_at_100
1559
- value: 0.168
1560
- - type: ndcg_at_1000
1561
- value: 0.259
1562
- - type: ndcg_at_3
1563
- value: 0.093
1564
- - type: ndcg_at_5
1565
- value: 0.11100000000000002
1566
- - type: precision_at_1
1567
- value: 0.086
1568
- - type: precision_at_10
1569
- value: 0.021
1570
- - type: precision_at_100
1571
- value: 0.004
1572
- - type: precision_at_1000
1573
- value: 0.001
1574
- - type: precision_at_3
1575
- value: 0.033
1576
- - type: precision_at_5
1577
- value: 0.029
1578
- - type: recall_at_1
1579
- value: 0.086
1580
- - type: recall_at_10
1581
- value: 0.215
1582
- - type: recall_at_100
1583
- value: 0.387
1584
- - type: recall_at_1000
1585
- value: 1.1560000000000001
1586
- - type: recall_at_3
1587
- value: 0.1
1588
- - type: recall_at_5
1589
- value: 0.14300000000000002
1590
- - task:
1591
- type: Classification
1592
- dataset:
1593
- type: mteb/mtop_domain
1594
- name: MTEB MTOPDomainClassification (en)
1595
- config: en
1596
- split: test
1597
- revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
1598
- metrics:
1599
- - type: accuracy
1600
- value: 34.42544459644323
1601
- - type: f1
1602
- value: 33.610930846065315
1603
- - task:
1604
- type: Classification
1605
- dataset:
1606
- type: mteb/mtop_domain
1607
- name: MTEB MTOPDomainClassification (de)
1608
- config: de
1609
- split: test
1610
- revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
1611
- metrics:
1612
- - type: accuracy
1613
- value: 27.511975204282894
1614
- - type: f1
1615
- value: 25.84277270994464
1616
- - task:
1617
- type: Classification
1618
- dataset:
1619
- type: mteb/mtop_domain
1620
- name: MTEB MTOPDomainClassification (es)
1621
- config: es
1622
- split: test
1623
- revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
1624
- metrics:
1625
- - type: accuracy
1626
- value: 29.51967978652435
1627
- - type: f1
1628
- value: 27.67290779782277
1629
- - task:
1630
- type: Classification
1631
- dataset:
1632
- type: mteb/mtop_domain
1633
- name: MTEB MTOPDomainClassification (fr)
1634
- config: fr
1635
- split: test
1636
- revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
1637
- metrics:
1638
- - type: accuracy
1639
- value: 26.003758221108676
1640
- - type: f1
1641
- value: 23.831315642315282
1642
- - task:
1643
- type: Classification
1644
- dataset:
1645
- type: mteb/mtop_domain
1646
- name: MTEB MTOPDomainClassification (hi)
1647
- config: hi
1648
- split: test
1649
- revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
1650
- metrics:
1651
- - type: accuracy
1652
- value: 20.132664037289356
1653
- - type: f1
1654
- value: 16.737043939830457
1655
- - task:
1656
- type: Classification
1657
- dataset:
1658
- type: mteb/mtop_domain
1659
- name: MTEB MTOPDomainClassification (th)
1660
- config: th
1661
- split: test
1662
- revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
1663
- metrics:
1664
- - type: accuracy
1665
- value: 14.701627486437612
1666
- - type: f1
1667
- value: 10.849797498613762
1668
- - task:
1669
- type: Classification
1670
- dataset:
1671
- type: mteb/mtop_intent
1672
- name: MTEB MTOPIntentClassification (en)
1673
- config: en
1674
- split: test
1675
- revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
1676
- metrics:
1677
- - type: accuracy
1678
- value: 13.948928408572733
1679
- - type: f1
1680
- value: 8.562615846233708
1681
- - task:
1682
- type: Classification
1683
- dataset:
1684
- type: mteb/mtop_intent
1685
- name: MTEB MTOPIntentClassification (de)
1686
- config: de
1687
- split: test
1688
- revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
1689
- metrics:
1690
- - type: accuracy
1691
- value: 11.814595660749507
1692
- - type: f1
1693
- value: 5.353787568647624
1694
- - task:
1695
- type: Classification
1696
- dataset:
1697
- type: mteb/mtop_intent
1698
- name: MTEB MTOPIntentClassification (es)
1699
- config: es
1700
- split: test
1701
- revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
1702
- metrics:
1703
- - type: accuracy
1704
- value: 12.468312208138759
1705
- - type: f1
1706
- value: 7.566990405355253
1707
- - task:
1708
- type: Classification
1709
- dataset:
1710
- type: mteb/mtop_intent
1711
- name: MTEB MTOPIntentClassification (fr)
1712
- config: fr
1713
- split: test
1714
- revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
1715
- metrics:
1716
- - type: accuracy
1717
- value: 9.320388349514563
1718
- - type: f1
1719
- value: 5.916218245687591
1720
- - task:
1721
- type: Classification
1722
- dataset:
1723
- type: mteb/mtop_intent
1724
- name: MTEB MTOPIntentClassification (hi)
1725
- config: hi
1726
- split: test
1727
- revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
1728
- metrics:
1729
- - type: accuracy
1730
- value: 3.2377196127644314
1731
- - type: f1
1732
- value: 1.2053714075016808
1733
- - task:
1734
- type: Classification
1735
- dataset:
1736
- type: mteb/mtop_intent
1737
- name: MTEB MTOPIntentClassification (th)
1738
- config: th
1739
- split: test
1740
- revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
1741
- metrics:
1742
- - type: accuracy
1743
- value: 4.4159132007233275
1744
- - type: f1
1745
- value: 1.1992998118559788
1746
- - task:
1747
- type: Classification
1748
- dataset:
1749
- type: mteb/amazon_massive_intent
1750
- name: MTEB MassiveIntentClassification (it)
1751
- config: it
1752
- split: test
1753
- revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
1754
- metrics:
1755
- - type: accuracy
1756
- value: 22.299932750504368
1757
- - type: f1
1758
- value: 20.147804322480262
1759
- - task:
1760
- type: Classification
1761
- dataset:
1762
- type: mteb/amazon_massive_scenario
1763
- name: MTEB MassiveScenarioClassification (it)
1764
- config: it
1765
- split: test
1766
- revision: 7d571f92784cd94a019292a1f45445077d0ef634
1767
- metrics:
1768
- - type: accuracy
1769
- value: 27.40753194351042
1770
- - type: f1
1771
- value: 25.187141587127705
1772
- - task:
1773
- type: Clustering
1774
- dataset:
1775
- type: mteb/medrxiv-clustering-p2p
1776
- name: MTEB MedrxivClusteringP2P
1777
- config: default
1778
- split: test
1779
- revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
1780
- metrics:
1781
- - type: v_measure
1782
- value: 11.797082944399047
1783
- - task:
1784
- type: Clustering
1785
- dataset:
1786
- type: mteb/medrxiv-clustering-s2s
1787
- name: MTEB MedrxivClusteringS2S
1788
- config: default
1789
- split: test
1790
- revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
1791
- metrics:
1792
- - type: v_measure
1793
- value: 11.059126362649126
1794
- - task:
1795
- type: Reranking
1796
- dataset:
1797
- type: mteb/mind_small
1798
- name: MTEB MindSmallReranking
1799
- config: default
1800
- split: test
1801
- revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
1802
- metrics:
1803
- - type: map
1804
- value: 24.452301182586798
1805
- - type: mrr
1806
- value: 24.374807287562085
1807
- - task:
1808
- type: Retrieval
1809
- dataset:
1810
- type: nfcorpus
1811
- name: MTEB NFCorpus
1812
- config: default
1813
- split: test
1814
- revision: None
1815
- metrics:
1816
- - type: map_at_1
1817
- value: 0.03
1818
- - type: map_at_10
1819
- value: 0.075
1820
- - type: map_at_100
1821
- value: 0.208
1822
- - type: map_at_1000
1823
- value: 0.529
1824
- - type: map_at_3
1825
- value: 0.051000000000000004
1826
- - type: map_at_5
1827
- value: 0.055999999999999994
1828
- - type: mrr_at_1
1829
- value: 1.238
1830
- - type: mrr_at_10
1831
- value: 2.939
1832
- - type: mrr_at_100
1833
- value: 3.927
1834
- - type: mrr_at_1000
1835
- value: 4.117
1836
- - type: mrr_at_3
1837
- value: 1.806
1838
- - type: mrr_at_5
1839
- value: 2.286
1840
- - type: ndcg_at_1
1841
- value: 1.084
1842
- - type: ndcg_at_10
1843
- value: 1.133
1844
- - type: ndcg_at_100
1845
- value: 2.1399999999999997
1846
- - type: ndcg_at_1000
1847
- value: 9.362
1848
- - type: ndcg_at_3
1849
- value: 0.9299999999999999
1850
- - type: ndcg_at_5
1851
- value: 0.958
1852
- - type: precision_at_1
1853
- value: 1.238
1854
- - type: precision_at_10
1855
- value: 1.269
1856
- - type: precision_at_100
1857
- value: 1.155
1858
- - type: precision_at_1000
1859
- value: 1.0250000000000001
1860
- - type: precision_at_3
1861
- value: 1.032
1862
- - type: precision_at_5
1863
- value: 1.053
1864
- - type: recall_at_1
1865
- value: 0.03
1866
- - type: recall_at_10
1867
- value: 0.22200000000000003
1868
- - type: recall_at_100
1869
- value: 3.779
1870
- - type: recall_at_1000
1871
- value: 29.471000000000004
1872
- - type: recall_at_3
1873
- value: 0.087
1874
- - type: recall_at_5
1875
- value: 0.11199999999999999
1876
- - task:
1877
- type: Retrieval
1878
- dataset:
1879
- type: nq
1880
- name: MTEB NQ
1881
- config: default
1882
- split: test
1883
- revision: None
1884
- metrics:
1885
- - type: map_at_1
1886
- value: 0.0
1887
- - type: map_at_10
1888
- value: 0.012
1889
- - type: map_at_100
1890
- value: 0.025
1891
- - type: map_at_1000
1892
- value: 0.027
1893
- - type: map_at_3
1894
- value: 0.0
1895
- - type: map_at_5
1896
- value: 0.006999999999999999
1897
- - type: mrr_at_1
1898
- value: 0.0
1899
- - type: mrr_at_10
1900
- value: 0.012
1901
- - type: mrr_at_100
1902
- value: 0.026
1903
- - type: mrr_at_1000
1904
- value: 0.029
1905
- - type: mrr_at_3
1906
- value: 0.0
1907
- - type: mrr_at_5
1908
- value: 0.006999999999999999
1909
- - type: ndcg_at_1
1910
- value: 0.0
1911
- - type: ndcg_at_10
1912
- value: 0.023
1913
- - type: ndcg_at_100
1914
- value: 0.092
1915
- - type: ndcg_at_1000
1916
- value: 0.16999999999999998
1917
- - type: ndcg_at_3
1918
- value: 0.0
1919
- - type: ndcg_at_5
1920
- value: 0.012
1921
- - type: precision_at_1
1922
- value: 0.0
1923
- - type: precision_at_10
1924
- value: 0.006
1925
- - type: precision_at_100
1926
- value: 0.004
1927
- - type: precision_at_1000
1928
- value: 0.001
1929
- - type: precision_at_3
1930
- value: 0.0
1931
- - type: precision_at_5
1932
- value: 0.006
1933
- - type: recall_at_1
1934
- value: 0.0
1935
- - type: recall_at_10
1936
- value: 0.058
1937
- - type: recall_at_100
1938
- value: 0.377
1939
- - type: recall_at_1000
1940
- value: 1.009
1941
- - type: recall_at_3
1942
- value: 0.0
1943
- - type: recall_at_5
1944
- value: 0.029
1945
- - task:
1946
- type: Retrieval
1947
- dataset:
1948
- type: quora
1949
- name: MTEB QuoraRetrieval
1950
- config: default
1951
- split: test
1952
- revision: None
1953
- metrics:
1954
- - type: map_at_1
1955
- value: 8.943
1956
- - type: map_at_10
1957
- value: 10.557
1958
- - type: map_at_100
1959
- value: 10.777000000000001
1960
- - type: map_at_1000
1961
- value: 10.812
1962
- - type: map_at_3
1963
- value: 10.137
1964
- - type: map_at_5
1965
- value: 10.351
1966
- - type: mrr_at_1
1967
- value: 10.51
1968
- - type: mrr_at_10
1969
- value: 12.229
1970
- - type: mrr_at_100
1971
- value: 12.468
1972
- - type: mrr_at_1000
1973
- value: 12.504999999999999
1974
- - type: mrr_at_3
1975
- value: 11.777
1976
- - type: mrr_at_5
1977
- value: 12.014
1978
- - type: ndcg_at_1
1979
- value: 10.5
1980
- - type: ndcg_at_10
1981
- value: 11.715
1982
- - type: ndcg_at_100
1983
- value: 12.925
1984
- - type: ndcg_at_1000
1985
- value: 14.163
1986
- - type: ndcg_at_3
1987
- value: 10.968
1988
- - type: ndcg_at_5
1989
- value: 11.264000000000001
1990
- - type: precision_at_1
1991
- value: 10.5
1992
- - type: precision_at_10
1993
- value: 1.696
1994
- - type: precision_at_100
1995
- value: 0.248
1996
- - type: precision_at_1000
1997
- value: 0.039
1998
- - type: precision_at_3
1999
- value: 4.623
2000
- - type: precision_at_5
2001
- value: 3.012
2002
- - type: recall_at_1
2003
- value: 8.943
2004
- - type: recall_at_10
2005
- value: 13.746
2006
- - type: recall_at_100
2007
- value: 19.521
2008
- - type: recall_at_1000
2009
- value: 29.255
2010
- - type: recall_at_3
2011
- value: 11.448
2012
- - type: recall_at_5
2013
- value: 12.332
2014
- - task:
2015
- type: Clustering
2016
- dataset:
2017
- type: mteb/reddit-clustering
2018
- name: MTEB RedditClustering
2019
- config: default
2020
- split: test
2021
- revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
2022
- metrics:
2023
- - type: v_measure
2024
- value: 4.845410629021448
2025
- - task:
2026
- type: Clustering
2027
- dataset:
2028
- type: mteb/reddit-clustering-p2p
2029
- name: MTEB RedditClusteringP2P
2030
- config: default
2031
- split: test
2032
- revision: 282350215ef01743dc01b456c7f5241fa8937f16
2033
- metrics:
2034
- - type: v_measure
2035
- value: 11.661900277329933
2036
- - task:
2037
- type: Retrieval
2038
- dataset:
2039
- type: scidocs
2040
- name: MTEB SCIDOCS
2041
- config: default
2042
- split: test
2043
- revision: None
2044
- metrics:
2045
- - type: map_at_1
2046
- value: 0.02
2047
- - type: map_at_10
2048
- value: 0.036000000000000004
2049
- - type: map_at_100
2050
- value: 0.056999999999999995
2051
- - type: map_at_1000
2052
- value: 0.07200000000000001
2053
- - type: map_at_3
2054
- value: 0.03
2055
- - type: map_at_5
2056
- value: 0.03
2057
- - type: mrr_at_1
2058
- value: 0.1
2059
- - type: mrr_at_10
2060
- value: 0.181
2061
- - type: mrr_at_100
2062
- value: 0.27899999999999997
2063
- - type: mrr_at_1000
2064
- value: 0.335
2065
- - type: mrr_at_3
2066
- value: 0.15
2067
- - type: mrr_at_5
2068
- value: 0.15
2069
- - type: ndcg_at_1
2070
- value: 0.1
2071
- - type: ndcg_at_10
2072
- value: 0.079
2073
- - type: ndcg_at_100
2074
- value: 0.28200000000000003
2075
- - type: ndcg_at_1000
2076
- value: 1.228
2077
- - type: ndcg_at_3
2078
- value: 0.077
2079
- - type: ndcg_at_5
2080
- value: 0.055
2081
- - type: precision_at_1
2082
- value: 0.1
2083
- - type: precision_at_10
2084
- value: 0.04
2085
- - type: precision_at_100
2086
- value: 0.034
2087
- - type: precision_at_1000
2088
- value: 0.027999999999999997
2089
- - type: precision_at_3
2090
- value: 0.067
2091
- - type: precision_at_5
2092
- value: 0.04
2093
- - type: recall_at_1
2094
- value: 0.02
2095
- - type: recall_at_10
2096
- value: 0.08
2097
- - type: recall_at_100
2098
- value: 0.703
2099
- - type: recall_at_1000
2100
- value: 5.632000000000001
2101
- - type: recall_at_3
2102
- value: 0.04
2103
- - type: recall_at_5
2104
- value: 0.04
2105
- - task:
2106
- type: STS
2107
- dataset:
2108
- type: mteb/sickr-sts
2109
- name: MTEB SICK-R
2110
- config: default
2111
- split: test
2112
- revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
2113
- metrics:
2114
- - type: cos_sim_pearson
2115
- value: 22.985682461739827
2116
- - type: cos_sim_spearman
2117
- value: 36.63211990852576
2118
- - type: euclidean_pearson
2119
- value: 30.883409587497358
2120
- - type: euclidean_spearman
2121
- value: 36.94600975857584
2122
- - type: manhattan_pearson
2123
- value: 36.736693988156894
2124
- - type: manhattan_spearman
2125
- value: 38.98446799028811
2126
- - task:
2127
- type: STS
2128
- dataset:
2129
- type: mteb/sts12-sts
2130
- name: MTEB STS12
2131
- config: default
2132
- split: test
2133
- revision: a0d554a64d88156834ff5ae9920b964011b16384
2134
- metrics:
2135
- - type: cos_sim_pearson
2136
- value: 2.5604178523517063
2137
- - type: cos_sim_spearman
2138
- value: 13.628378324133767
2139
- - type: euclidean_pearson
2140
- value: 7.9904894312005865
2141
- - type: euclidean_spearman
2142
- value: 15.090689818973416
2143
- - type: manhattan_pearson
2144
- value: 14.011092205465575
2145
- - type: manhattan_spearman
2146
- value: 18.04386210573924
2147
- - task:
2148
- type: STS
2149
- dataset:
2150
- type: mteb/sts13-sts
2151
- name: MTEB STS13
2152
- config: default
2153
- split: test
2154
- revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
2155
- metrics:
2156
- - type: cos_sim_pearson
2157
- value: 18.59414271348264
2158
- - type: cos_sim_spearman
2159
- value: 23.758346452530105
2160
- - type: euclidean_pearson
2161
- value: 22.985667268384162
2162
- - type: euclidean_spearman
2163
- value: 25.143580728437183
2164
- - type: manhattan_pearson
2165
- value: 28.109316236003
2166
- - type: manhattan_spearman
2167
- value: 29.403691387442727
2168
- - task:
2169
- type: STS
2170
- dataset:
2171
- type: mteb/sts14-sts
2172
- name: MTEB STS14
2173
- config: default
2174
- split: test
2175
- revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
2176
- metrics:
2177
- - type: cos_sim_pearson
2178
- value: 8.292349216262673
2179
- - type: cos_sim_spearman
2180
- value: 15.648383623810028
2181
- - type: euclidean_pearson
2182
- value: 12.136605941196938
2183
- - type: euclidean_spearman
2184
- value: 16.37547051924145
2185
- - type: manhattan_pearson
2186
- value: 21.049918496319524
2187
- - type: manhattan_spearman
2188
- value: 22.168125518695295
2189
- - task:
2190
- type: STS
2191
- dataset:
2192
- type: mteb/sts15-sts
2193
- name: MTEB STS15
2194
- config: default
2195
- split: test
2196
- revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
2197
- metrics:
2198
- - type: cos_sim_pearson
2199
- value: 21.0574858763695
2200
- - type: cos_sim_spearman
2201
- value: 28.24306393347735
2202
- - type: euclidean_pearson
2203
- value: 25.67620587891895
2204
- - type: euclidean_spearman
2205
- value: 28.802005577995292
2206
- - type: manhattan_pearson
2207
- value: 33.333168689238846
2208
- - type: manhattan_spearman
2209
- value: 33.7249701052437
2210
- - task:
2211
- type: STS
2212
- dataset:
2213
- type: mteb/sts16-sts
2214
- name: MTEB STS16
2215
- config: default
2216
- split: test
2217
- revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
2218
- metrics:
2219
- - type: cos_sim_pearson
2220
- value: 23.345013082866608
2221
- - type: cos_sim_spearman
2222
- value: 32.08654087568418
2223
- - type: euclidean_pearson
2224
- value: 29.1302480053082
2225
- - type: euclidean_spearman
2226
- value: 32.723960824054224
2227
- - type: manhattan_pearson
2228
- value: 34.73363269084969
2229
- - type: manhattan_spearman
2230
- value: 35.946509333697016
2231
- - task:
2232
- type: STS
2233
- dataset:
2234
- type: mteb/sts17-crosslingual-sts
2235
- name: MTEB STS17 (ko-ko)
2236
- config: ko-ko
2237
- split: test
2238
- revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
2239
- metrics:
2240
- - type: cos_sim_pearson
2241
- value: -1.0510693376748088
2242
- - type: cos_sim_spearman
2243
- value: 3.7330446273344897
2244
- - type: euclidean_pearson
2245
- value: -0.2108306777168949
2246
- - type: euclidean_spearman
2247
- value: 3.627369552634812
2248
- - type: manhattan_pearson
2249
- value: 1.5031538964733262
2250
- - type: manhattan_spearman
2251
- value: 5.004910973166412
2252
- - task:
2253
- type: STS
2254
- dataset:
2255
- type: mteb/sts17-crosslingual-sts
2256
- name: MTEB STS17 (ar-ar)
2257
- config: ar-ar
2258
- split: test
2259
- revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
2260
- metrics:
2261
- - type: cos_sim_pearson
2262
- value: 11.578393453214481
2263
- - type: cos_sim_spearman
2264
- value: 21.790827126422034
2265
- - type: euclidean_pearson
2266
- value: 19.06071141618503
2267
- - type: euclidean_spearman
2268
- value: 22.161779839314196
2269
- - type: manhattan_pearson
2270
- value: 17.725623325242474
2271
- - type: manhattan_spearman
2272
- value: 20.43157514666076
2273
- - task:
2274
- type: STS
2275
- dataset:
2276
- type: mteb/sts17-crosslingual-sts
2277
- name: MTEB STS17 (en-ar)
2278
- config: en-ar
2279
- split: test
2280
- revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
2281
- metrics:
2282
- - type: cos_sim_pearson
2283
- value: 17.29239442081278
2284
- - type: cos_sim_spearman
2285
- value: 16.292056207420202
2286
- - type: euclidean_pearson
2287
- value: 16.503491974377727
2288
- - type: euclidean_spearman
2289
- value: 15.541440440884651
2290
- - type: manhattan_pearson
2291
- value: 21.158901085317268
2292
- - type: manhattan_spearman
2293
- value: 21.781541830999963
2294
- - task:
2295
- type: STS
2296
- dataset:
2297
- type: mteb/sts17-crosslingual-sts
2298
- name: MTEB STS17 (en-de)
2299
- config: en-de
2300
- split: test
2301
- revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
2302
- metrics:
2303
- - type: cos_sim_pearson
2304
- value: 22.589778414759955
2305
- - type: cos_sim_spearman
2306
- value: 18.997838545450612
2307
- - type: euclidean_pearson
2308
- value: 21.90016323186628
2309
- - type: euclidean_spearman
2310
- value: 18.905160536986692
2311
- - type: manhattan_pearson
2312
- value: 16.913499882046576
2313
- - type: manhattan_spearman
2314
- value: 15.669617887287327
2315
- - task:
2316
- type: STS
2317
- dataset:
2318
- type: mteb/sts17-crosslingual-sts
2319
- name: MTEB STS17 (en-en)
2320
- config: en-en
2321
- split: test
2322
- revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
2323
- metrics:
2324
- - type: cos_sim_pearson
2325
- value: 33.05366168385912
2326
- - type: cos_sim_spearman
2327
- value: 37.781952608504135
2328
- - type: euclidean_pearson
2329
- value: 37.085941074268966
2330
- - type: euclidean_spearman
2331
- value: 37.8364215997913
2332
- - type: manhattan_pearson
2333
- value: 42.316206028770736
2334
- - type: manhattan_spearman
2335
- value: 41.74208275697782
2336
- - task:
2337
- type: STS
2338
- dataset:
2339
- type: mteb/sts17-crosslingual-sts
2340
- name: MTEB STS17 (en-tr)
2341
- config: en-tr
2342
- split: test
2343
- revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
2344
- metrics:
2345
- - type: cos_sim_pearson
2346
- value: 23.991765076225654
2347
- - type: cos_sim_spearman
2348
- value: 20.588105042260104
2349
- - type: euclidean_pearson
2350
- value: 19.712724760717997
2351
- - type: euclidean_spearman
2352
- value: 19.253030106327383
2353
- - type: manhattan_pearson
2354
- value: 16.84198288544301
2355
- - type: manhattan_spearman
2356
- value: 17.61549197324614
2357
- - task:
2358
- type: STS
2359
- dataset:
2360
- type: mteb/sts17-crosslingual-sts
2361
- name: MTEB STS17 (es-en)
2362
- config: es-en
2363
- split: test
2364
- revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
2365
- metrics:
2366
- - type: cos_sim_pearson
2367
- value: 24.968980346008365
2368
- - type: cos_sim_spearman
2369
- value: 27.252856647926286
2370
- - type: euclidean_pearson
2371
- value: 24.58496162769602
2372
- - type: euclidean_spearman
2373
- value: 26.034323771297824
2374
- - type: manhattan_pearson
2375
- value: 22.40058722998031
2376
- - type: manhattan_spearman
2377
- value: 24.459230575688714
2378
- - task:
2379
- type: STS
2380
- dataset:
2381
- type: mteb/sts17-crosslingual-sts
2382
- name: MTEB STS17 (es-es)
2383
- config: es-es
2384
- split: test
2385
- revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
2386
- metrics:
2387
- - type: cos_sim_pearson
2388
- value: 32.94464820482554
2389
- - type: cos_sim_spearman
2390
- value: 40.462017863354085
2391
- - type: euclidean_pearson
2392
- value: 38.88676423326504
2393
- - type: euclidean_spearman
2394
- value: 40.47190508444464
2395
- - type: manhattan_pearson
2396
- value: 39.692234741895874
2397
- - type: manhattan_spearman
2398
- value: 39.478725017400166
2399
- - task:
2400
- type: STS
2401
- dataset:
2402
- type: mteb/sts17-crosslingual-sts
2403
- name: MTEB STS17 (fr-en)
2404
- config: fr-en
2405
- split: test
2406
- revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
2407
- metrics:
2408
- - type: cos_sim_pearson
2409
- value: 23.342163445031748
2410
- - type: cos_sim_spearman
2411
- value: 27.27097487628386
2412
- - type: euclidean_pearson
2413
- value: 24.76789948947651
2414
- - type: euclidean_spearman
2415
- value: 25.81926286149811
2416
- - type: manhattan_pearson
2417
- value: 25.475723026689685
2418
- - type: manhattan_spearman
2419
- value: 25.813420033921787
2420
- - task:
2421
- type: STS
2422
- dataset:
2423
- type: mteb/sts17-crosslingual-sts
2424
- name: MTEB STS17 (it-en)
2425
- config: it-en
2426
- split: test
2427
- revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
2428
- metrics:
2429
- - type: cos_sim_pearson
2430
- value: 7.717130622537516
2431
- - type: cos_sim_spearman
2432
- value: 9.437435044381033
2433
- - type: euclidean_pearson
2434
- value: 7.9423592614250555
2435
- - type: euclidean_spearman
2436
- value: 8.010785684725303
2437
- - type: manhattan_pearson
2438
- value: 8.217253457576026
2439
- - type: manhattan_spearman
2440
- value: 8.247881477427692
2441
- - task:
2442
- type: STS
2443
- dataset:
2444
- type: mteb/sts17-crosslingual-sts
2445
- name: MTEB STS17 (nl-en)
2446
- config: nl-en
2447
- split: test
2448
- revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
2449
- metrics:
2450
- - type: cos_sim_pearson
2451
- value: 16.16499446427259
2452
- - type: cos_sim_spearman
2453
- value: 17.21754435880688
2454
- - type: euclidean_pearson
2455
- value: 16.325415307049443
2456
- - type: euclidean_spearman
2457
- value: 16.293339731059863
2458
- - type: manhattan_pearson
2459
- value: 19.410680542804005
2460
- - type: manhattan_spearman
2461
- value: 18.95736158862253
2462
- - task:
2463
- type: STS
2464
- dataset:
2465
- type: mteb/sts22-crosslingual-sts
2466
- name: MTEB STS22 (it)
2467
- config: it
2468
- split: test
2469
- revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
2470
- metrics:
2471
- - type: cos_sim_pearson
2472
- value: 30.67175493186678
2473
- - type: cos_sim_spearman
2474
- value: 37.92638638971281
2475
- - type: euclidean_pearson
2476
- value: 37.47072224334179
2477
- - type: euclidean_spearman
2478
- value: 39.23036609148336
2479
- - type: manhattan_pearson
2480
- value: 42.92657347688227
2481
- - type: manhattan_spearman
2482
- value: 43.93955531904934
2483
- - task:
2484
- type: STS
2485
- dataset:
2486
- type: mteb/stsbenchmark-sts
2487
- name: MTEB STSBenchmark
2488
- config: default
2489
- split: test
2490
- revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
2491
- metrics:
2492
- - type: cos_sim_pearson
2493
- value: 15.51842992576514
2494
- - type: cos_sim_spearman
2495
- value: 22.738964472371965
2496
- - type: euclidean_pearson
2497
- value: 20.68981398028433
2498
- - type: euclidean_spearman
2499
- value: 23.35518754871016
2500
- - type: manhattan_pearson
2501
- value: 26.488467867333142
2502
- - type: manhattan_spearman
2503
- value: 27.318174781418055
2504
- - task:
2505
- type: Reranking
2506
- dataset:
2507
- type: mteb/scidocs-reranking
2508
- name: MTEB SciDocsRR
2509
- config: default
2510
- split: test
2511
- revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
2512
- metrics:
2513
- - type: map
2514
- value: 30.728870040728083
2515
- - type: mrr
2516
- value: 45.1852849401869
2517
- - task:
2518
- type: Retrieval
2519
- dataset:
2520
- type: scifact
2521
- name: MTEB SciFact
2522
- config: default
2523
- split: test
2524
- revision: None
2525
- metrics:
2526
- - type: map_at_1
2527
- value: 0.0
2528
- - type: map_at_10
2529
- value: 0.104
2530
- - type: map_at_100
2531
- value: 0.265
2532
- - type: map_at_1000
2533
- value: 0.334
2534
- - type: map_at_3
2535
- value: 0.0
2536
- - type: map_at_5
2537
- value: 0.067
2538
- - type: mrr_at_1
2539
- value: 0.0
2540
- - type: mrr_at_10
2541
- value: 0.104
2542
- - type: mrr_at_100
2543
- value: 0.27
2544
- - type: mrr_at_1000
2545
- value: 0.345
2546
- - type: mrr_at_3
2547
- value: 0.0
2548
- - type: mrr_at_5
2549
- value: 0.067
2550
- - type: ndcg_at_1
2551
- value: 0.0
2552
- - type: ndcg_at_10
2553
- value: 0.22899999999999998
2554
- - type: ndcg_at_100
2555
- value: 1.044
2556
- - type: ndcg_at_1000
2557
- value: 3.911
2558
- - type: ndcg_at_3
2559
- value: 0.0
2560
- - type: ndcg_at_5
2561
- value: 0.129
2562
- - type: precision_at_1
2563
- value: 0.0
2564
- - type: precision_at_10
2565
- value: 0.067
2566
- - type: precision_at_100
2567
- value: 0.05
2568
- - type: precision_at_1000
2569
- value: 0.032
2570
- - type: precision_at_3
2571
- value: 0.0
2572
- - type: precision_at_5
2573
- value: 0.067
2574
- - type: recall_at_1
2575
- value: 0.0
2576
- - type: recall_at_10
2577
- value: 0.6669999999999999
2578
- - type: recall_at_100
2579
- value: 4.583
2580
- - type: recall_at_1000
2581
- value: 28.910999999999998
2582
- - type: recall_at_3
2583
- value: 0.0
2584
- - type: recall_at_5
2585
- value: 0.333
2586
- - task:
2587
- type: PairClassification
2588
- dataset:
2589
- type: mteb/sprintduplicatequestions-pairclassification
2590
- name: MTEB SprintDuplicateQuestions
2591
- config: default
2592
- split: test
2593
- revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
2594
- metrics:
2595
- - type: cos_sim_accuracy
2596
- value: 99.01089108910891
2597
- - type: cos_sim_ap
2598
- value: 2.649295518982714
2599
- - type: cos_sim_f1
2600
- value: 6.26322471434617
2601
- - type: cos_sim_precision
2602
- value: 3.972088030059045
2603
- - type: cos_sim_recall
2604
- value: 14.799999999999999
2605
- - type: dot_accuracy
2606
- value: 99.0089108910891
2607
- - type: dot_ap
2608
- value: 1.713700413108619
2609
- - type: dot_f1
2610
- value: 5.073705862187179
2611
- - type: dot_precision
2612
- value: 3.061646669424907
2613
- - type: dot_recall
2614
- value: 14.799999999999999
2615
- - type: euclidean_accuracy
2616
- value: 99.01089108910891
2617
- - type: euclidean_ap
2618
- value: 2.744099763470491
2619
- - type: euclidean_f1
2620
- value: 6.291706387035273
2621
- - type: euclidean_precision
2622
- value: 4.611085235211924
2623
- - type: euclidean_recall
2624
- value: 9.9
2625
- - type: manhattan_accuracy
2626
- value: 99.01089108910891
2627
- - type: manhattan_ap
2628
- value: 3.2781717730991327
2629
- - type: manhattan_f1
2630
- value: 7.68245838668374
2631
- - type: manhattan_precision
2632
- value: 10.676156583629894
2633
- - type: manhattan_recall
2634
- value: 6.0
2635
- - type: max_accuracy
2636
- value: 99.01089108910891
2637
- - type: max_ap
2638
- value: 3.2781717730991327
2639
- - type: max_f1
2640
- value: 7.68245838668374
2641
- - task:
2642
- type: Clustering
2643
- dataset:
2644
- type: mteb/stackexchange-clustering
2645
- name: MTEB StackExchangeClustering
2646
- config: default
2647
- split: test
2648
- revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
2649
- metrics:
2650
- - type: v_measure
2651
- value: 8.602221384568187
2652
- - task:
2653
- type: Clustering
2654
- dataset:
2655
- type: mteb/stackexchange-clustering-p2p
2656
- name: MTEB StackExchangeClusteringP2P
2657
- config: default
2658
- split: test
2659
- revision: 815ca46b2622cec33ccafc3735d572c266efdb44
2660
- metrics:
2661
- - type: v_measure
2662
- value: 25.619483506865205
2663
- - task:
2664
- type: Reranking
2665
- dataset:
2666
- type: mteb/stackoverflowdupquestions-reranking
2667
- name: MTEB StackOverflowDupQuestions
2668
- config: default
2669
- split: test
2670
- revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
2671
- metrics:
2672
- - type: map
2673
- value: 20.02237719216371
2674
- - type: mrr
2675
- value: 18.132453739071387
2676
- - task:
2677
- type: Retrieval
2678
- dataset:
2679
- type: trec-covid
2680
- name: MTEB TRECCOVID
2681
- config: default
2682
- split: test
2683
- revision: None
2684
- metrics:
2685
- - type: map_at_1
2686
- value: 0.004
2687
- - type: map_at_10
2688
- value: 0.009000000000000001
2689
- - type: map_at_100
2690
- value: 0.011000000000000001
2691
- - type: map_at_1000
2692
- value: 0.016
2693
- - type: map_at_3
2694
- value: 0.004
2695
- - type: map_at_5
2696
- value: 0.006999999999999999
2697
- - type: mrr_at_1
2698
- value: 2.0
2699
- - type: mrr_at_10
2700
- value: 4.233
2701
- - type: mrr_at_100
2702
- value: 4.936
2703
- - type: mrr_at_1000
2704
- value: 5.103
2705
- - type: mrr_at_3
2706
- value: 2.0
2707
- - type: mrr_at_5
2708
- value: 3.9
2709
- - type: ndcg_at_1
2710
- value: 1.0
2711
- - type: ndcg_at_10
2712
- value: 1.1039999999999999
2713
- - type: ndcg_at_100
2714
- value: 0.486
2715
- - type: ndcg_at_1000
2716
- value: 0.666
2717
- - type: ndcg_at_3
2718
- value: 0.469
2719
- - type: ndcg_at_5
2720
- value: 1.347
2721
- - type: precision_at_1
2722
- value: 2.0
2723
- - type: precision_at_10
2724
- value: 1.4000000000000001
2725
- - type: precision_at_100
2726
- value: 0.52
2727
- - type: precision_at_1000
2728
- value: 0.37
2729
- - type: precision_at_3
2730
- value: 0.6669999999999999
2731
- - type: precision_at_5
2732
- value: 2.0
2733
- - type: recall_at_1
2734
- value: 0.004
2735
- - type: recall_at_10
2736
- value: 0.024
2737
- - type: recall_at_100
2738
- value: 0.09
2739
- - type: recall_at_1000
2740
- value: 0.807
2741
- - type: recall_at_3
2742
- value: 0.004
2743
- - type: recall_at_5
2744
- value: 0.016
2745
- - task:
2746
- type: Retrieval
2747
- dataset:
2748
- type: webis-touche2020
2749
- name: MTEB Touche2020
2750
- config: default
2751
- split: test
2752
- revision: None
2753
- metrics:
2754
- - type: map_at_1
2755
- value: 0.0
2756
- - type: map_at_10
2757
- value: 0.0
2758
- - type: map_at_100
2759
- value: 0.0
2760
- - type: map_at_1000
2761
- value: 0.0
2762
- - type: map_at_3
2763
- value: 0.0
2764
- - type: map_at_5
2765
- value: 0.0
2766
- - type: mrr_at_1
2767
- value: 0.0
2768
- - type: mrr_at_10
2769
- value: 0.0
2770
- - type: mrr_at_100
2771
- value: 0.0
2772
- - type: mrr_at_1000
2773
- value: 0.0
2774
- - type: mrr_at_3
2775
- value: 0.0
2776
- - type: mrr_at_5
2777
- value: 0.0
2778
- - type: ndcg_at_1
2779
- value: 0.0
2780
- - type: ndcg_at_10
2781
- value: 0.0
2782
- - type: ndcg_at_100
2783
- value: 0.0
2784
- - type: ndcg_at_1000
2785
- value: 0.0
2786
- - type: ndcg_at_3
2787
- value: 0.0
2788
- - type: ndcg_at_5
2789
- value: 0.0
2790
- - type: precision_at_1
2791
- value: 0.0
2792
- - type: precision_at_10
2793
- value: 0.0
2794
- - type: precision_at_100
2795
- value: 0.0
2796
- - type: precision_at_1000
2797
- value: 0.0
2798
- - type: precision_at_3
2799
- value: 0.0
2800
- - type: precision_at_5
2801
- value: 0.0
2802
- - type: recall_at_1
2803
- value: 0.0
2804
- - type: recall_at_10
2805
- value: 0.0
2806
- - type: recall_at_100
2807
- value: 0.0
2808
- - type: recall_at_1000
2809
- value: 0.0
2810
- - type: recall_at_3
2811
- value: 0.0
2812
- - type: recall_at_5
2813
- value: 0.0
2814
- - task:
2815
- type: Classification
2816
- dataset:
2817
- type: mteb/toxic_conversations_50k
2818
- name: MTEB ToxicConversationsClassification
2819
- config: default
2820
- split: test
2821
- revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
2822
- metrics:
2823
- - type: accuracy
2824
- value: 55.065799999999996
2825
- - type: ap
2826
- value: 8.3123142340845
2827
- - type: f1
2828
- value: 41.78797425886187
2829
- - task:
2830
- type: Classification
2831
- dataset:
2832
- type: mteb/tweet_sentiment_extraction
2833
- name: MTEB TweetSentimentExtractionClassification
2834
- config: default
2835
- split: test
2836
- revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
2837
- metrics:
2838
- - type: accuracy
2839
- value: 41.177136389360506
2840
- - type: f1
2841
- value: 40.882588170909244
2842
- - task:
2843
- type: Clustering
2844
- dataset:
2845
- type: mteb/twentynewsgroups-clustering
2846
- name: MTEB TwentyNewsgroupsClustering
2847
- config: default
2848
- split: test
2849
- revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
2850
- metrics:
2851
- - type: v_measure
2852
- value: 10.046104242285523
2853
- - task:
2854
- type: PairClassification
2855
- dataset:
2856
- type: mteb/twittersemeval2015-pairclassification
2857
- name: MTEB TwitterSemEval2015
2858
- config: default
2859
- split: test
2860
- revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
2861
- metrics:
2862
- - type: cos_sim_accuracy
2863
- value: 77.63604935328128
2864
- - type: cos_sim_ap
2865
- value: 32.380569186976906
2866
- - type: cos_sim_f1
2867
- value: 38.29160530191458
2868
- - type: cos_sim_precision
2869
- value: 27.110086708374492
2870
- - type: cos_sim_recall
2871
- value: 65.17150395778364
2872
- - type: dot_accuracy
2873
- value: 77.40954878702986
2874
- - type: dot_ap
2875
- value: 28.34039741384004
2876
- - type: dot_f1
2877
- value: 37.45059908412271
2878
- - type: dot_precision
2879
- value: 24.565879351493706
2880
- - type: dot_recall
2881
- value: 78.7598944591029
2882
- - type: euclidean_accuracy
2883
- value: 77.63604935328128
2884
- - type: euclidean_ap
2885
- value: 32.40705726976434
2886
- - type: euclidean_f1
2887
- value: 38.365584519430676
2888
- - type: euclidean_precision
2889
- value: 27.524093620927033
2890
- - type: euclidean_recall
2891
- value: 63.298153034300796
2892
- - type: manhattan_accuracy
2893
- value: 77.70757584788699
2894
- - type: manhattan_ap
2895
- value: 33.03410839977045
2896
- - type: manhattan_f1
2897
- value: 39.04353514063523
2898
- - type: manhattan_precision
2899
- value: 26.943524927274552
2900
- - type: manhattan_recall
2901
- value: 70.87071240105541
2902
- - type: max_accuracy
2903
- value: 77.70757584788699
2904
- - type: max_ap
2905
- value: 33.03410839977045
2906
- - type: max_f1
2907
- value: 39.04353514063523
2908
- - task:
2909
- type: PairClassification
2910
- dataset:
2911
- type: mteb/twitterurlcorpus-pairclassification
2912
- name: MTEB TwitterURLCorpus
2913
- config: default
2914
- split: test
2915
- revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
2916
- metrics:
2917
- - type: cos_sim_accuracy
2918
- value: 75.80626382582373
2919
- - type: cos_sim_ap
2920
- value: 41.94768516713251
2921
- - type: cos_sim_f1
2922
- value: 44.69374385849984
2923
- - type: cos_sim_precision
2924
- value: 34.620263870094725
2925
- - type: cos_sim_recall
2926
- value: 63.035109331690784
2927
- - type: dot_accuracy
2928
- value: 74.79528078550084
2929
- - type: dot_ap
2930
- value: 33.69361208467778
2931
- - type: dot_f1
2932
- value: 44.620064092118845
2933
- - type: dot_precision
2934
- value: 34.467567340773684
2935
- - type: dot_recall
2936
- value: 63.250692947336006
2937
- - type: euclidean_accuracy
2938
- value: 75.98866767570924
2939
- - type: euclidean_ap
2940
- value: 42.65497342948604
2941
- - type: euclidean_f1
2942
- value: 44.794497753619176
2943
- - type: euclidean_precision
2944
- value: 35.006501950585175
2945
- - type: euclidean_recall
2946
- value: 62.180474283954425
2947
- - type: manhattan_accuracy
2948
- value: 76.37870143982613
2949
- - type: manhattan_ap
2950
- value: 46.65401496383161
2951
- - type: manhattan_f1
2952
- value: 48.14085011643678
2953
- - type: manhattan_precision
2954
- value: 36.0535091417839
2955
- - type: manhattan_recall
2956
- value: 72.42069602710194
2957
- - type: max_accuracy
2958
- value: 76.37870143982613
2959
- - type: max_ap
2960
- value: 46.65401496383161
2961
- - type: max_f1
2962
- value: 48.14085011643678
2963
- ---
2964
  pipeline_tag: sentence-similarity
2965
  tags:
2966
  - sentence-transformers
 
1
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  pipeline_tag: sentence-similarity
3
  tags:
4
  - sentence-transformers