--- license: apache-2.0 base_model: facebook/wav2vec2-base tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: wav2vec2-base-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.8 --- # wav2vec2-base-finetuned-gtzan This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.7966 - Accuracy: 0.8 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.956 | 1.0 | 113 | 1.8269 | 0.48 | | 1.3896 | 2.0 | 226 | 1.5206 | 0.53 | | 1.1 | 3.0 | 339 | 1.1325 | 0.66 | | 0.7254 | 4.0 | 452 | 1.1456 | 0.62 | | 0.6099 | 5.0 | 565 | 0.8337 | 0.73 | | 0.5452 | 6.0 | 678 | 0.8621 | 0.72 | | 0.5286 | 7.0 | 791 | 0.6800 | 0.82 | | 0.2849 | 8.0 | 904 | 0.8335 | 0.77 | | 0.2248 | 9.0 | 1017 | 0.7541 | 0.8 | | 0.0822 | 10.0 | 1130 | 0.7966 | 0.8 | ### Framework versions - Transformers 4.39.0.dev0 - Pytorch 2.1.0+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2