PyTorch
Turkish
English
llama
Fevzi KILAS commited on
Commit
aa2dddb
·
verified ·
1 Parent(s): 2fb33a0

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +108 -0
README.md ADDED
@@ -0,0 +1,108 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ datasets:
4
+ - NIEXCHE/turkish_agriculture_QA_llama2_22.6k
5
+ language:
6
+ - tr
7
+ - en
8
+ ---
9
+
10
+ # Model Card for LLaMA-2-7B-NIEXCHE
11
+
12
+ This model was fine-tuned from LLaMA-2-7B on a Turkish agriculture QA dataset. It supports both Turkish and English languages and was trained for use in agriculture-related natural language processing (NLP) tasks.
13
+
14
+ ## Model Details
15
+
16
+ ### Model Description
17
+
18
+ - **Developed by:** NIEXCHE (Fevzi KILAS)
19
+ - **Finetuned from model:** [meta-llama/Llama-2-7b](https://huggingface.co/meta-llama/Llama-2-7b)
20
+ - **License:** Apache-2.0
21
+ - **Language(s) (NLP):** Turkish, English
22
+ - **Model type:** LLaMA-2-based model
23
+ - **Training Dataset:** [NIEXCHE/turkish_agriculture_QA_llama2_22.6k](https://huggingface.co/datasets/NIEXCHE/turkish_agriculture_QA_llama2_22.6k)
24
+
25
+ ### Model Sources
26
+
27
+ - **Repository:** [Model Repository (TBA)](#)
28
+ - **Demo:** [TBA](#)
29
+
30
+ ## Uses
31
+
32
+ ### Direct Use
33
+
34
+ The model can be used directly for question-answering tasks related to agriculture in Turkish and English. It is fine-tuned specifically for agricultural Q&A, making it suitable for similar domains and use cases.
35
+
36
+ ### Out-of-Scope Use
37
+
38
+ The model might not perform well on general knowledge questions outside of the agriculture domain.
39
+
40
+ ## Training Details
41
+
42
+ ### Training Data
43
+
44
+ The training data was a custom dataset created by translating and cleaning agricultural QA data from [this source](https://huggingface.co/datasets/KisanVaani/agriculture-qa-english-only). The dataset contains 22.6k question-answer pairs in Turkish.
45
+
46
+ ### Training Procedure
47
+
48
+ The model was trained using the following frameworks and libraries:
49
+ - **Frameworks:** PyTorch, `transformers`, `accelerate==0.21.0`, `peft==0.4.0`, `bitsandbytes==0.40.2`, `trl==0.4.7`
50
+ - **Precision:** The model was trained using 4-bit quantization (BNB) with mixed precision (`float16`) to optimize memory usage.
51
+
52
+ #### Training Hyperparameters
53
+
54
+ - **Base Model:** `meta-llama/Llama-2-7b`
55
+ - **Batch Size:** 4 (per device)
56
+ - **Learning Rate:** 2e-4
57
+ - **LoRA Parameters:**
58
+ - lora_r = 64
59
+ - lora_alpha = 16
60
+ - lora_dropout = 0.1
61
+ - **Epochs:** 1
62
+ - **Optimizer:** Paged AdamW (32-bit)
63
+ - **Gradient Accumulation Steps:** 1
64
+ - **Scheduler:** Cosine
65
+ - **Max Gradient Norm:** 0.3
66
+ - **Gradient Checkpointing:** Enabled
67
+ - **Warmup Ratio:** 0.03
68
+ - **Group by Length:** Enabled
69
+ - **Max Sequence Length:** None
70
+
71
+ ### Hardware
72
+
73
+ - **Training Hardware:** Google Colab Pro (A100 GPU) and 53 GB system RAM.
74
+ - **Training Time:** Approximately 1 hour 40 minutes.
75
+
76
+ Training output:
77
+ `TrainOutput(global_step=5654, training_loss=0.7829279924898043, metrics={'train_runtime': 6029.996, 'train_samples_per_second': 3.75, 'train_steps_per_second': 0.938, 'total_flos': 5.516196145999872e+16, 'train_loss': 0.7829279924898043, 'epoch': 1.0})`
78
+
79
+
80
+
81
+ ## Evaluation
82
+
83
+ The same dataset (`NIEXCHE/turkish_agriculture_QA_llama2_22.6k`) was used for evaluation purposes.
84
+
85
+ ## Environmental Impact
86
+
87
+ Carbon emissions were estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute).
88
+
89
+ - **Hardware Type:** Google Colab (A100 GPU)
90
+ - **Hours used:** 1 hour 40 minutes
91
+ - **Compute Region:** Google Cloud (Colab)
92
+ - **Carbon Emitted:** Estimations pending
93
+
94
+ ## Citation
95
+
96
+ If you use this model in your research or applications, please cite it as:
97
+
98
+ ```bibtex
99
+ @misc{Fevzi2024LLaMA-2-7B-NIEXCHE,
100
+ author = {Fevzi KILAS},
101
+ title = {LLaMA-2-7B-NIEXCHE: A Turkish Agriculture QA Model},
102
+ year = {2024},
103
+ howpublished = {https://huggingface.co/NIEXCHE/turkish_agriculture_QA_llama2_22.6k}
104
+ }
105
+ ```
106
+ ## Contact:
107
+
108
+ [NIEXCHE (Fevzi KILAS)](https://niexche.github.io/)