nielsr's picture
nielsr HF staff
Librarian Bot: Add base_model information to model (#1)
3244a0e
|
raw
history blame
1.93 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - image_folder
metrics:
  - accuracy
base_model: Visual-Attention-Network/van-base
model-index:
  - name: van-base-finetuned-eurosat-imgaug
    results:
      - task:
          type: image-classification
          name: Image Classification
        dataset:
          name: image_folder
          type: image_folder
          args: default
        metrics:
          - type: accuracy
            value: 0.9885185185185185
            name: Accuracy

van-base-finetuned-eurosat-imgaug

This model is a fine-tuned version of Visual-Attention-Network/van-base on the image_folder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0379
  • Accuracy: 0.9885

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.0887 1.0 190 0.0589 0.98
0.055 2.0 380 0.0390 0.9878
0.0223 3.0 570 0.0379 0.9885

Framework versions

  • Transformers 4.18.0
  • Pytorch 1.10.0+cu111
  • Datasets 2.0.0
  • Tokenizers 0.11.6