ppo-LunarLander-v2 / config.json
nigelyeap's picture
Upload PPO LunarLander-v2 trained agent
64c0b37
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f6de6df00d0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f6de6df0160>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f6de6df01f0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f6de6df0280>", "_build": "<function ActorCriticPolicy._build at 0x7f6de6df0310>", "forward": "<function ActorCriticPolicy.forward at 0x7f6de6df03a0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f6de6df0430>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f6de6df04c0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f6de6df0550>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f6de6df05e0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f6de6df0670>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f6de6df0700>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f6de6de5700>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 805312, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1694754802192509933, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADPIiD2u6YS6HvUltFGAXa+C8j47HgySMwAAgD8AAIA/5p54PXuJij2PoIO9moyavpbNpj3qu208AAAAAAAAAAAGgHA+PT2WPjZ3DL6AsKa+TBt+PU5rUD0AAAAAAAAAADOzWTlXpCk/dmSNPbK+0L5M/Oy7XqOkPQAAAAAAAAAAzQ6FPFxfH7pL5/Y1z5VSMbMBKDsQ7SC1AACAPwAAgD+aeTk7e0KLunckhrWXcFSwdyYPObR2tTQAAIA/AACAPzPbnjx2DUI9zbkbvcPXiL64Aog9E5lRvQAAAAAAAAAADXWNvY+INryzYp+8a+THPON7n73CraE9AACAPwAAgD8zteo9ggMHPt2HV76pJJi+idkAPQ6Y5L0AAAAAAAAAAKBLAT7asgo/L+o8Pf3xvr60Pew9Dz2MPAAAAAAAAAAAmhGUu6t0jT0QmLC7OmGTvgn7+zyCK3G9AAAAAAAAAADzao691uiyP7PAFL9+vz6+kpq3vJgQc74AAAAAAAAAANp4pj27a489Gyd2voBVJb4i4Sm9vJgGugAAAAAAAAAAeixSPqU2bD570Jm+xzuYvuxtj7yL55O9AAAAAAAAAACzd0E+qRXcPnhZeL51/I++97F4vGj7Hr4AAAAAAAAAAM0E8D2W3Xs9KWVHvhzHh75e+mU9ps/zuwAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.19718400000000003, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV/QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHIJGuPmxMaMAWyUTRoBjAF0lEdAnQiV2eQMhHV9lChoBkdAcKOScbzbvmgHS+9oCEdAnQidTP0I1XV9lChoBkdAcishCdBjWmgHS/xoCEdAnQk7gTAWSHV9lChoBkdAcnozollbvGgHS85oCEdAnQl4y0rsjXV9lChoBkdAMUW0mdAgPmgHS79oCEdAnQnMPJ7swHV9lChoBkdAcOuJqqOtGWgHS+toCEdAnQpjfaYeDHV9lChoBkdAcHVujynUD2gHS9toCEdAnQr0qUeMh3V9lChoBkdAcXsA3DNyHWgHTQMBaAhHQJ0LHVsk6cR1fZQoaAZHQHF5hfa6BiFoB0v6aAhHQJ0LVBSk0rN1fZQoaAZHQHBecUmD15BoB00vAWgIR0CdC3ItDlYEdX2UKGgGR0BsWS1RceKbaAdL72gIR0CdC2Yht+CsdX2UKGgGR0BuHZtWMju8aAdL2GgIR0CdDThxHXmOdX2UKGgGR0BzTdj/dZaFaAdNEgFoCEdAnQ2g7T2FnXV9lChoBkdAcSAUkv9LpWgHS/hoCEdAnQ2xr8BMjHV9lChoBkdAcUHI0IkZ8GgHTQ4BaAhHQJ0NuobXHzZ1fZQoaAZHQHBTOF+NLlFoB0vtaAhHQJ0OWarmyPd1fZQoaAZHQHCtXSSeRPpoB0vOaAhHQJ0Ons6aLGd1fZQoaAZHQG+9qfFrEcdoB0v2aAhHQJ0OnW1+iJx1fZQoaAZHQHJqf5ULlV9oB00XAWgIR0CdDrpcHGCJdX2UKGgGR0Bxy8rVe8f3aAdL2mgIR0CdDqXMQmNSdX2UKGgGR0BxV9jd56dEaAdL2GgIR0CdD7CjDbaidX2UKGgGR0Bx5Jjc2zfKaAdLy2gIR0CdI18M/hVEdX2UKGgGR0BzKMN9YwIuaAdNEAFoCEdAnSOMGcFyJnV9lChoBkdAcolXiiqQzWgHS+toCEdAnSPSsKb8WXV9lChoBkdAcyv9WIXTE2gHS+hoCEdAnSPv2oNutXV9lChoBkdAcMIfHxSYPWgHS/9oCEdAnSULNW2gF3V9lChoBkdAcfoNC7btZ2gHTTMBaAhHQJ0nT+glF+d1fZQoaAZHQHDq7rX18LNoB0vdaAhHQJ0nluhsZYR1fZQoaAZHQHDqvMW43FVoB00DAWgIR0CdKHuUUwi8dX2UKGgGR0BxslWBBiTdaAdLzmgIR0CdKKhKDkELdX2UKGgGR0BPMrGaQV9GaAdL1GgIR0CdKLPtlZoxdX2UKGgGR0Bwo7E4vN/waAdL32gIR0CdKL7NjbztdX2UKGgGR0ByDmQ3gk1NaAdL22gIR0CdKPYvnKW+dX2UKGgGR0BxUPN1QqI8aAdNAwFoCEdAnSj/JA+pwXV9lChoBkdAcfIf+CK77WgHTQwBaAhHQJ0pYl+mWMV1fZQoaAZHQHCD6yjYZl5oB00VAWgIR0CdKzNo8IRidX2UKGgGR0Bzlst7KJVKaAdL1WgIR0CdK5t7rs0IdX2UKGgGR0Bw7IokRjBmaAdL0GgIR0CdK+gOBlMAdX2UKGgGR0BxGYzLwF1TaAdL72gIR0CdLMCvovBadX2UKGgGR0BzRFp/PPcBaAdNGgFoCEdAnS0ffXPJJXV9lChoBkdAcZ5IVM23rmgHTRMBaAhHQJ0uqYkVvdd1fZQoaAZHQECOB91EE1VoB0unaAhHQJ0u+apgkTp1fZQoaAZHQG/FJYkmhM9oB00EAWgIR0CdLzzgMtsfdX2UKGgGR0BzeZfICEHuaAdLwmgIR0CdL9K1og3cdX2UKGgGR0BxJOUGFBY3aAdLyGgIR0CdMChm5DqodX2UKGgGR0ByJxrO7g89aAdL0GgIR0CdMC2TPjXGdX2UKGgGR0ByK7vUjLSvaAdL8mgIR0CdMFdHUc4pdX2UKGgGR0Bvr5HqeK8+aAdL4mgIR0CdMG8p1A7gdX2UKGgGR0BwQQ23rleXaAdL4GgIR0CdMLxVyWAxdX2UKGgGR0BxQhpVS4vwaAdNEQFoCEdAnTDyqlxffHV9lChoBkdAcDrntv4ub2gHTQYBaAhHQJ0xzvQWvbJ1fZQoaAZHQHBwReHBUJhoB0veaAhHQJ0x/Xd0q6R1fZQoaAZHQHJ1V32VVxVoB0vsaAhHQJ0ylw++ueV1fZQoaAZHQFMu2GqPwNNoB0uUaAhHQJ0yvabnX/Z1fZQoaAZHQG2wm3F1jiJoB0vYaAhHQJ0y1Bv73wl1fZQoaAZHQHEnL8WKuSxoB0vyaAhHQJ0y7wOOKfp1fZQoaAZHQHNT7XDm8uloB0vsaAhHQJ0zfyGzru91fZQoaAZHQHCEayGBWghoB0vUaAhHQJ01HhYNiH91fZQoaAZHQHIPQuM+/xloB0v8aAhHQJ01Fyp71I11fZQoaAZHQHFS66e5Fw1oB0vUaAhHQJ01JWT5ftx1fZQoaAZHQHG5P0EovzxoB00HAWgIR0CdNSgydnTRdX2UKGgGR0BxOXHPu5SWaAdL5mgIR0CdNUh+OOsDdX2UKGgGR0BQOepCKJl8aAdLlGgIR0CdNZKCQLeAdX2UKGgGR0BxtKwosqaxaAdL7mgIR0CdNmZy+6AfdX2UKGgGR0BwE3KmsNlRaAdL5GgIR0CdNmIJ7b+MdX2UKGgGR0BzIsQbuMMraAdL+2gIR0CdNmi4axX5dX2UKGgGR0BzwWeoUBXCaAdNEQFoCEdAnTbS5qdpZnV9lChoBkdAcLid2xIJ7mgHS9FoCEdAnTbdqk/KQ3V9lChoBkdAcWdoS+QEIWgHTQMBaAhHQJ046bWmP5p1fZQoaAZHQHOuuwxFiKBoB00HAWgIR0CdOVkCV8kVdX2UKGgGR0BxCAFzMibEaAdL72gIR0CdOYjdYW+HdX2UKGgGR0BvET0g8r7PaAdNCgFoCEdAnTmIecQRPHV9lChoBkdAcry+t8uzyGgHTSMBaAhHQJ057MeOn2t1fZQoaAZHQHFrQZ4wAVBoB0vIaAhHQJ06PLcKw6h1fZQoaAZHQFRHCFsYVItoB0ugaAhHQJ06YM7U5Ml1fZQoaAZHQHFC58F6iTNoB0vaaAhHQJ06kqNIbwV1fZQoaAZHQG8U2bG3nZFoB0vpaAhHQJ065Ryfcvd1fZQoaAZHQHHXCxA0KqpoB0vvaAhHQJ07EYDTz/Z1fZQoaAZHQHEAfYao/A1oB0v3aAhHQJ07QANoak11fZQoaAZHQHFaG/WUbDNoB0v2aAhHQJ07mVPepGZ1fZQoaAZHQHMulFx4pttoB0v1aAhHQJ08VQCSzPd1fZQoaAZHQHJ++3H7xd9oB00EAWgIR0CdPKjin5zpdX2UKGgGR0Bxfiliz9jxaAdL8GgIR0CdPKPWhAW0dX2UKGgGR0Bs94hllK9PaAdL9WgIR0CdPMdS2phndX2UKGgGR0BwulCx/ustaAdL2GgIR0CdPsSElE7XdX2UKGgGR0BxAdAmiQDFaAdL+2gIR0CdPzNZNfw7dX2UKGgGR0BwgYrI5o4/aAdL8GgIR0CdP4UlzEJjdX2UKGgGR0BxNTf642CNaAdL1GgIR0CdP/I9TxXodX2UKGgGR0BxLa+PBBRiaAdNDwFoCEdAnUA2KAJ9iXV9lChoBkdAcwerAxi5NGgHS+BoCEdAnUCn9zfaYnV9lChoBkdAcbaGNJe3QWgHTRMBaAhHQJ1Rz8GcFyJ1fZQoaAZHQHEgs45tFa1oB0vhaAhHQJ1Ru29cry11fZQoaAZHQHHawMH8jzJoB00SAWgIR0CdUiF0xM37dX2UKGgGR0Bzgqdc0LtvaAdNEAFoCEdAnVI5Xlr/KnV9lChoBkdAcrxT101ZT2gHS/JoCEdAnVJgu27Wd3V9lChoBkdAcKV0PYnOSmgHS/JoCEdAnVK96ol2NnV9lChoBkdAc4fCjDbaiGgHS+hoCEdAnVNAeq7yx3V9lChoBkdAchMS8an752gHS9hoCEdAnVMzvuw5enV9lChoBkdAclWpAUtZm2gHS9toCEdAnVM9r433pXV9lChoBkdAcmCUj9n9N2gHTSQBaAhHQJ1VApQUHpt1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 444, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}