{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7be5db66dcc0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1693805810390234352, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAPNl1z32j4c//xSsOwqFpr6Vk6o9tF+OvQAAAAAAAAAAwMHNvgIGJz8eXGm+tD7qvlAMxr49EsI9AAAAAAAAAABAuM09uJ7FuROeUbVbW9iwWlrvO5tuYzQAAAAAAACAP83lSr31SLw/eDEFvxVrQj6rvRK8ugcMvgAAAAAAAAAAdc2JvqGdyD7I2Ws+VByMvjTfMb2b7EC8AAAAAAAAAACalYU9o3d8PYIbZjxPn4C+NIvevNBo3rwAAAAAAAAAABOuFz62fjG84dAHPFR6i7p4GpS9M21muwAAAAAAAIA/gOZpvSZ4yz7mNiw+53eFvnpQqTw+E/Y9AAAAAAAAAABmyty794wZPrL4rD1N3IW+0RR3vPaSlT0AAAAAAAAAABNuED4xhxI/Zc0IvuZYkL5c2RS9TNczvQAAAAAAAAAATWEKvSE5gj29oKs9xMt2vkqtKbvGvRW9AAAAAAAAAACA6kW+O0eZvKwtx7rs6Ba5mpkJPvBg+jkAAIA/AACAP83HFD6FY9W5gjVLOiLYjTUi1NY6st1vuQAAgD8AAIA/M8sGvUUOEz72Bb89hdYfvqx82rwO/DW9AAAAAAAAAADNPHw8dsypP6KTKT5c8vW+SaBxOrLwdz0AAAAAAAAAAACzjrxIS6K6Hi5YOKnHVDNDsJk6NsJ4twAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVNgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG3/aBAfMfSMAWyUTaEBjAF0lEdAkyxKc7Qsw3V9lChoBkdAciKog3cYZWgHTVIBaAhHQJMuZI+W4Vh1fZQoaAZHQHFB2LxZuAJoB02HAWgIR0CTL9ogFHJ+dX2UKGgGR0BytwzqKP4maAdNFwJoCEdAkzFwxJul43V9lChoBkdAcbLwPiDM/2gHTWgCaAhHQJMyXdtVJcx1fZQoaAZHQG/1BnBciW5oB00vAWgIR0CTMnLw4KhMdX2UKGgGR0A79oxYaHbiaAdL2WgIR0CTM92/zreJdX2UKGgGR0BxHgkWykbhaAdNUQFoCEdAkzRqf8MuvnV9lChoBkdAa/JyXD3ueGgHTRsDaAhHQJM02cawUxp1fZQoaAZHQG78ofr8iwBoB00qAWgIR0CTRlerdWQwdX2UKGgGR0A+R7rcCYCyaAdLvmgIR0CTRrYRujyndX2UKGgGR0Bw1IdCE6DHaAdNnwFoCEdAk0eNUOuq3nV9lChoBkdAbzMLfDUExWgHTVUBaAhHQJNIn4xk/bF1fZQoaAZHQHEk4gV45cVoB023AWgIR0CTSXGaQV9GdX2UKGgGR0BGJiWu5jH5aAdL6mgIR0CTSb07r9l3dX2UKGgGR0Bxv6gnMMZxaAdNQQFoCEdAk0n3dGiHqXV9lChoBkdAcgHsCT2WZGgHTTQDaAhHQJNLxmcvugJ1fZQoaAZHQHEQVejVQRBoB00nAWgIR0CTTKVLBbfQdX2UKGgGR0BxTvAbhm5EaAdNBgJoCEdAk021AZ88cXV9lChoBkdAcPEEYwZflmgHTRwBaAhHQJNOEsqaw2V1fZQoaAZHQEHapeeFtbdoB0vmaAhHQJNPf90ihWZ1fZQoaAZHQHAgPI4lyBFoB01DAWgIR0CTT/6AvtdBdX2UKGgGR0BumDJfYzzmaAdNiwFoCEdAk1BWNR3u/nV9lChoBkdAb32WSlnAZmgHTTMBaAhHQJNRNiqhlDp1fZQoaAZHQG+v5rP+n65oB02TAWgIR0CTUe7hNucddX2UKGgGR0BxscZKnNxEaAdNJwFoCEdAk1LtH2AXmHV9lChoBkdAcBT4B3iaRmgHTXUCaAhHQJNTCo2n8891fZQoaAZHQHA0yB9Tgl5oB026AWgIR0CTVtnjhky2dX2UKGgGR0Bv5HKji4rjaAdNbwFoCEdAk1cEnPVurXV9lChoBkdAcJxOGTLW7WgHS/loCEdAk1dj/+85CHV9lChoBkdAcUkYc/+sHWgHTUMBaAhHQJNYZTefqX51fZQoaAZHQHH4djbzshRoB01LA2gIR0CTWS53C9AYdX2UKGgGR0BwffuUliSaaAdNSwFoCEdAk1ouP3i71HV9lChoBkdAccITd+G47WgHTacBaAhHQJNadJRO1v51fZQoaAZHQHBUwDV6NVBoB01FAWgIR0CTW9khzNlidX2UKGgGR0BxrYsbvPToaAdNJgFoCEdAk1zQz+FUQ3V9lChoBkdAbrEEFGG21GgHTUIBaAhHQJNdlK9PDYR1fZQoaAZHQHEMm4d6syVoB01AAWgIR0CTYP1V5rxidX2UKGgGR0Bv1IQpWmxdaAdNawFoCEdAk2I3T3IuG3V9lChoBkdAcQ1qSowVTWgHTQIBaAhHQJNlUojOcDt1fZQoaAZHQHJsU4zabnZoB02BAWgIR0CTZu7ojfNzdX2UKGgGR0BvJfCGetjkaAdNGgFoCEdAk2jwSrYGuHV9lChoBkdAb/SJa7mMfmgHTUcBaAhHQJNpAuYhMal1fZQoaAZHQG7deC9RJmNoB01TAWgIR0CTad89fTkRdX2UKGgGR0BtCYzHjp9raAdNFgFoCEdAk2oZe/pMYnV9lChoBkdAcKFUahpQDWgHTc0BaAhHQJNrK5+Ytxx1fZQoaAZHQHDS0tAcDKZoB00nAWgIR0CTbXuTRplCdX2UKGgGR0BIZ7l7tzCDaAdL3mgIR0CTbgEL6UJOdX2UKGgGR0Bv0LwBo24vaAdNSAFoCEdAk24gPd2xIXV9lChoBkdAbjqBltj0+WgHTWUBaAhHQJNuc1He7+V1fZQoaAZHQHEWoXO4XoFoB03LAWgIR0CTb7C0WuYAdX2UKGgGR0Aolf0mMOwxaAdLt2gIR0CTcGhYNiH7dX2UKGgGR0BxTU/FBIFvaAdL8WgIR0CTgujNY8uBdX2UKGgGR0BwIhwiqyWzaAdNVwFoCEdAk4QT6vaDf3V9lChoBkdAcJtOyE+PimgHTU0BaAhHQJOEsrVe8f51fZQoaAZHQFukIdELH+9oB03oA2gIR0CThb2l2vB8dX2UKGgGR7/682Jiy6czaAdL42gIR0CThk62v0ROdX2UKGgGR0BD6Ai3XqZ/aAdL7WgIR0CThtf5ULlWdX2UKGgGR0Byc36FdszmaAdNVwFoCEdAk4cxuGbkO3V9lChoBkdAblZeLNwBHWgHTQ0BaAhHQJOHcSi/O+t1fZQoaAZHQG+dlMAWBSVoB02MAWgIR0CTiFcO9WZJdX2UKGgGR0Bwgsw7DEWJaAdNoQJoCEdAk4jEI9kjHHV9lChoBkdAcTLyWAwwkGgHTUcBaAhHQJOKLEDQqqh1fZQoaAZHQHB1BPKuB+ZoB02eAWgIR0CTijRhMJyAdX2UKGgGR0A2oC0WuX/paAdL4WgIR0CTiv8Nx2jgdX2UKGgGR0Bwo7Bj4HopaAdNRwFoCEdAk4s4tL+PzXV9lChoBkdAcGp30wrUb2gHTTcBaAhHQJOLZpFkQPJ1fZQoaAZHQGI9UNSZSeloB03oA2gIR0CTi6t4iX6ZdX2UKGgGR0But+GfwqiHaAdNHAFoCEdAk45Djm0VrXV9lChoBkdAPysA/9pAU2gHS+hoCEdAk45PVI7NjnV9lChoBkdAcP0+glF+eGgHTTwBaAhHQJOQZgiNbTt1fZQoaAZHQHGv1OXVsk9oB00YAWgIR0CTkHBd2PkrdX2UKGgGR0BxPrxtpEhJaAdNEgNoCEdAk5DnxaxHG3V9lChoBkdAcs4BfKISDmgHTVgBaAhHQJOSCm8/Uvx1fZQoaAZHQHFiirksBhhoB00nAWgIR0CTkta11GLDdX2UKGgGR0BHbwLVnVXnaAdL3GgIR0CTkv1nM+vAdX2UKGgGR0Byn/94u9OAaAdNWgFoCEdAk5TE3Ov+wXV9lChoBkdAb7snYQJ5V2gHTSMBaAhHQJOWdXIU8FJ1fZQoaAZHQHBd4QJ5VwRoB01GAWgIR0CTltT7VJ+VdX2UKGgGR0BwAO3AmAskaAdNRwFoCEdAk5bx3zMA3nV9lChoBkdAb25dQfp2U2gHTTMBaAhHQJOYYuRLbpN1fZQoaAZHQHEnN5Y5ksloB00uAmgIR0CTmeuoxYaHdX2UKGgGR0ByMr1uivgWaAdN4gFoCEdAk5pDV+Zw43V9lChoBkdAbJZI3irDImgHTT0BaAhHQJOctXjlxOt1fZQoaAZHQG8zx6fJ3gVoB00QAWgIR0CTnU+LWI43dX2UKGgGR0BxHzmbLEDRaAdNaQFoCEdAk57pbt7a7HV9lChoBkdARzEzImw7kmgHS9ZoCEdAk59y8OCoTHV9lChoBkdAbbrs9B8hLWgHTSwBaAhHQJOfdhXr+o91fZQoaAZHQHHnLt/nW8RoB01GAWgIR0CToATYNAkcdX2UKGgGR0Bu7mTJQtSRaAdNPgFoCEdAk6MCMUAT7HV9lChoBkdAcMHK/mDDj2gHTWEBaAhHQJOksAn2Iwd1fZQoaAZHQGzpfZVXFLpoB00lAWgIR0CTpYruYx+KdX2UKGgGR0BxjBhlUZNxaAdNEgFoCEdAk6YRlYlpoXV9lChoBkdAcadAmAskIGgHTT8BaAhHQJOmzFGXokl1fZQoaAZHQG8IdKNAC4loB01SAWgIR0CTp2FY+0PZdX2UKGgGR0BxCD0dzXBhaAdNEgFoCEdAk6e40ZWJanV9lChoBkdAcYUz7/GVA2gHTUIBaAhHQJOqFzBAOax1fZQoaAZHQHI8NzKcNH9oB00aAWgIR0CTqoCwKSgXdX2UKGgGR0Bvl8JOWSlnaAdNFAFoCEdAk6y1R1oxpXV9lChoBkdAchJjsD4gzWgHTS8CaAhHQJOstK8L8aZ1ZS4="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}