--- license: llama2 library_name: transformers --- # Bitnet-LLama-70M Inspired from Bitnet-LLama-70M is a 70M parameter model trained using the method described in [The Era of 1-bit LLMs: All Large Language Models are in 1.58 Bits](https://arxiv.org/abs/2402.17764). It was trained on the subset of the [HuggingFaceTB/cosmopedia](https://huggingface.co/datasets/HuggingFaceTB/cosmopedia) dataset. This is just a small experiment to try out BitNet. Bitnet-LLama-70M was trained for 2 epochs on Colab T4. This model is just an experiment and you might not get good results while chatting with it due to smaller model size and less training. Wandb training report is as follows: ![image/png](https://huggingface.co/nijil-k/Bitnet-1.58b-Nous-Llama2-70M/resolve/main/Training%20Graphs.png) # Load a pretrained BitNet model ```python from transformers import AutoModelForCausalLM, AutoTokenizer from transformers.models.llama.modeling_llama import * model = "nijil-k/Bitnet-1.58b-Nous-Llama2-70M" tokenizer = AutoTokenizer.from_pretrained(model) model = AutoModelForCausalLM.from_pretrained(model) def convert_to_bitnet(model, copy_weights): for name, module in model.named_modules(): # Replace linear layers with BitNet if isinstance(module, LlamaSdpaAttention) or isinstance(module, LlamaMLP): for child_name, child_module in module.named_children(): if isinstance(child_module, nn.Linear): bitlinear = BitLinear(child_module.in_features, child_module.out_features, child_module.bias is not None).to(device="cuda:0") if copy_weights: bitlinear.weight = child_module.weight if child_module.bias is not None: bitlinear.bias = child_module.bias setattr(module, child_name, bitlinear) # Remove redundant input_layernorms elif isinstance(module, LlamaDecoderLayer): for child_name, child_module in module.named_children(): if isinstance(child_module, LlamaRMSNorm) and child_name == "input_layernorm": setattr(module, child_name, nn.Identity().to(device="cuda:0")) convert_to_bitnet(model, copy_weights=True) model.to(device="cuda:0") prompt = "What is Machine Learning?" inputs = tokenizer(prompt, return_tensors="pt").to(model.device) generate_ids = model.generate(inputs.input_ids, max_length=100) tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] ```