Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- ru
|
4 |
+
- uk
|
5 |
+
- be
|
6 |
+
- kk
|
7 |
+
- az
|
8 |
+
- hy
|
9 |
+
- ka
|
10 |
+
- he
|
11 |
+
- en
|
12 |
+
- de
|
13 |
+
tags:
|
14 |
+
- language classification
|
15 |
+
datasets:
|
16 |
+
- open_subtitles
|
17 |
+
- tatoeba
|
18 |
+
- oscar
|
19 |
+
---
|
20 |
+
|
21 |
+
# RoBERTa for Multilabel Language Classification
|
22 |
+
## Training
|
23 |
+
RoBERTa fine-tuned on small parts of Open Subtitles, Oscar and Tatoeba datasets (~9k samples per language).
|
24 |
+
|
25 |
+
Implemented heuristic algorithm for multilingual training data creation - https://github.com/n1kstep/lang-classifier
|
26 |
+
|
27 |
+
| data source | language |
|
28 |
+
|-----------------|----------------|
|
29 |
+
| open_subtitles | ka, he, en, de |
|
30 |
+
| oscar | be, kk, az, hu |
|
31 |
+
| tatoeba | ru, uk |
|
32 |
+
|
33 |
+
## Validation
|
34 |
+
The metrics obtained from validation on the another part of dataset (~1k samples per language).
|
35 |
+
|
36 |
+
| Training Loss | Validation Loss | F1-Score | Roc Auc | Accuracy | Support |
|
37 |
+
|---------------|-----------------|----------|----------|----------|---------|
|
38 |
+
| 0.161500 | 0.110949 | 0.947844 | 0.953939 | 0.762063 | 26858 |
|