Lunar-Landing model 1st iteration
Browse files- PPO-LunarLander.zip +3 -0
- PPO-LunarLander/_stable_baselines3_version +1 -0
- PPO-LunarLander/data +95 -0
- PPO-LunarLander/policy.optimizer.pth +3 -0
- PPO-LunarLander/policy.pth +3 -0
- PPO-LunarLander/pytorch_variables.pth +3 -0
- PPO-LunarLander/system_info.txt +7 -0
- README.md +37 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
PPO-LunarLander.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f51531f59df4e5909ef9bcfe31ce174cbe6e0b10a85c58e20485b8315fc5db83
|
3 |
+
size 147324
|
PPO-LunarLander/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
PPO-LunarLander/data
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f75f2524b80>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f75f2524c10>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f75f2524ca0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f75f2524d30>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f75f2524dc0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f75f2524e50>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f75f2524ee0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f75f2524f70>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f75f2526040>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f75f25260d0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f75f2526160>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f75f25261f0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7f75f25a32a0>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"observation_space": {
|
25 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
26 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
27 |
+
"dtype": "float32",
|
28 |
+
"_shape": [
|
29 |
+
8
|
30 |
+
],
|
31 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
32 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
33 |
+
"bounded_below": "[False False False False False False False False]",
|
34 |
+
"bounded_above": "[False False False False False False False False]",
|
35 |
+
"_np_random": null
|
36 |
+
},
|
37 |
+
"action_space": {
|
38 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
39 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
40 |
+
"n": 4,
|
41 |
+
"_shape": [],
|
42 |
+
"dtype": "int64",
|
43 |
+
"_np_random": null
|
44 |
+
},
|
45 |
+
"n_envs": 16,
|
46 |
+
"num_timesteps": 1015808,
|
47 |
+
"_total_timesteps": 1000000,
|
48 |
+
"_num_timesteps_at_start": 0,
|
49 |
+
"seed": null,
|
50 |
+
"action_noise": null,
|
51 |
+
"start_time": 1675936331745080153,
|
52 |
+
"learning_rate": 0.0003,
|
53 |
+
"tensorboard_log": null,
|
54 |
+
"lr_schedule": {
|
55 |
+
":type:": "<class 'function'>",
|
56 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
57 |
+
},
|
58 |
+
"_last_obs": {
|
59 |
+
":type:": "<class 'numpy.ndarray'>",
|
60 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM1yi7ycvqk/xzYAvsDk5b62dwC892AFvQAAAAAAAAAAGmaavbgWybk2zEi4Nqs8tuJ1Ybsb5nM3AAAAAAAAgD8a4C2+nGxuvKp4V7trCgq4eBrVPdYXXToAAIA/AACAP6aQkT24xuK5xywsue2UELSctTY4phtLOAAAgD8AAAAAUyNGvgVz+ru0dJk6XJMqOA6oVD0KobO5AACAPwAAgD+A6zw99hQiurJeH7PL+z2w71evut71vTMAAIA/AACAP5qzVL3x75g/4xTYvZ88HL85oYm9nlJ7PAAAAAAAAAAAplXpPU0zOj864Ym8FnkDv1vRzz17sQK9AAAAAAAAAACApTm+oWuevGVe9Lu3z4K613MUPlBYTjsAAIA/AACAP0BwCD5PLQW86nXAPKA/lzynEOi5M8SDvQAAgD8AAIA/pl2cPQqtWT5qzna+K7uYvpGHK73z6My9AAAAAAAAAAD9H6E+/WuOP5A+vD5Tywa/++2xPsWbKzsAAAAAAAAAAAAR7bzssq+7bgW+uyOTrTwWQA693PiRPQAAgD8AAIA/yjiQPgT+VT8uA7o9K1z/vmlJqz7QKU29AAAAAAAAAACAmv+9PZc7u4Z3krusmc+5eDRIPHtLszoAAIA/AACAP2YOfL2k9XW7xtXJvDRemTzZe6a8ruaCPQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
61 |
+
},
|
62 |
+
"_last_episode_starts": {
|
63 |
+
":type:": "<class 'numpy.ndarray'>",
|
64 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
65 |
+
},
|
66 |
+
"_last_original_obs": null,
|
67 |
+
"_episode_num": 0,
|
68 |
+
"use_sde": false,
|
69 |
+
"sde_sample_freq": -1,
|
70 |
+
"_current_progress_remaining": -0.015808000000000044,
|
71 |
+
"ep_info_buffer": {
|
72 |
+
":type:": "<class 'collections.deque'>",
|
73 |
+
":serialized:": "gAWVNBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIp1zhXa4rcUCUhpRSlIwBbJRNJAKMAXSUR0ClCJRUedTYdX2UKGgGaAloD0MI5US7CikXWUCUhpRSlGgVTegDaBZHQKUImS7oSth1fZQoaAZoCWgPQwh+VS5U/pVyQJSGlFKUaBVNeAFoFkdApQjyD5CWvHV9lChoBmgJaA9DCAfQ7/s3iG9AlIaUUpRoFUvmaBZHQKUI9IJ7b+N1fZQoaAZoCWgPQwhxGw3gre9vQJSGlFKUaBVL1GgWR0ClCR5SvTw2dX2UKGgGaAloD0MIfUELCVhicUCUhpRSlGgVS8xoFkdApQkr8gpz93V9lChoBmgJaA9DCOW4UzpY3nBAlIaUUpRoFUvfaBZHQKUJSGahHsl1fZQoaAZoCWgPQwjGNqloLCNiQJSGlFKUaBVN6ANoFkdApQnie7L+xXV9lChoBmgJaA9DCHEDPj+MPm9AlIaUUpRoFUvRaBZHQKULDvQ4S6F1fZQoaAZoCWgPQwjulXmr7u1wQJSGlFKUaBVNawFoFkdApQvRkZrHl3V9lChoBmgJaA9DCGL4iJhSQHJAlIaUUpRoFUvdaBZHQKUMALncL0B1fZQoaAZoCWgPQwgTEJNwITByQJSGlFKUaBVLxmgWR0ClDAWtEG7jdX2UKGgGaAloD0MInxwFiIIOcUCUhpRSlGgVTaoBaBZHQKUMDjYqXnh1fZQoaAZoCWgPQwiLiGLyhspiQJSGlFKUaBVN6ANoFkdApQwj2tdRi3V9lChoBmgJaA9DCCv8Gd7sNXBAlIaUUpRoFUvHaBZHQKUMP8gIQe51fZQoaAZoCWgPQwimKQKcXnduQJSGlFKUaBVL8mgWR0ClDE+XRgJDdX2UKGgGaAloD0MIXAGFenqLckCUhpRSlGgVS+loFkdApQx7FwT/Q3V9lChoBmgJaA9DCGMK1jhbEHJAlIaUUpRoFU1NAWgWR0ClDI/ub7TEdX2UKGgGaAloD0MIPjxLkFFOc0CUhpRSlGgVS9hoFkdApQyS9RJmNHV9lChoBmgJaA9DCAVqMXiY1W5AlIaUUpRoFUvGaBZHQKUM3OpKjBV1fZQoaAZoCWgPQwjcZFQZhh9yQJSGlFKUaBVNUAFoFkdApQ1k74i5eHV9lChoBmgJaA9DCNPcCmF1gXBAlIaUUpRoFUvraBZHQKUOVpblijN1fZQoaAZoCWgPQwg6kst/yM9tQJSGlFKUaBVLxmgWR0ClDpmsvIwNdX2UKGgGaAloD0MIknh5OleWbUCUhpRSlGgVS8xoFkdApQ7WHpKSPnV9lChoBmgJaA9DCK7TSEslvXBAlIaUUpRoFUvAaBZHQKUO2rFOwgV1fZQoaAZoCWgPQwizQpHu5zpxQJSGlFKUaBVL4WgWR0ClDuKxC6YmdX2UKGgGaAloD0MIhA8lWjIYckCUhpRSlGgVS99oFkdApQ764pc5bXV9lChoBmgJaA9DCAVtcvgke3NAlIaUUpRoFUvOaBZHQKUPPKujh1l1fZQoaAZoCWgPQwjhs3Vw8DVwQJSGlFKUaBVLzmgWR0ClD1JjMFEBdX2UKGgGaAloD0MIeuBjsGKAcUCUhpRSlGgVS/RoFkdApQ+DY7JXAHV9lChoBmgJaA9DCAvPS8UGpXBAlIaUUpRoFU1AAWgWR0ClEHoo3JgcdX2UKGgGaAloD0MIvceZJuyPckCUhpRSlGgVTSQBaBZHQKURBvG6wt91fZQoaAZoCWgPQwhs7X2qysNxQJSGlFKUaBVL+2gWR0ClERvK+zt1dX2UKGgGaAloD0MIz4WRXlSGcECUhpRSlGgVS81oFkdApRG1eMQ2/HV9lChoBmgJaA9DCHjwEwcQuHFAlIaUUpRoFUvvaBZHQKUR/7Vrhzh1fZQoaAZoCWgPQwjHLebnhlByQJSGlFKUaBVNfAFoFkdApRIENWluWXV9lChoBmgJaA9DCE/MejHURHFAlIaUUpRoFUvLaBZHQKUSFFI/Z/V1fZQoaAZoCWgPQwht4Xmp2NhvQJSGlFKUaBVL42gWR0ClEktx+8XfdX2UKGgGaAloD0MIDhZO0vzibUCUhpRSlGgVS+9oFkdApRKDytmthnV9lChoBmgJaA9DCFKco44OtG9AlIaUUpRoFUvvaBZHQKUS5dVNpM91fZQoaAZoCWgPQwiDiNS0y2xxQJSGlFKUaBVL7mgWR0ClEvfU4JeFdX2UKGgGaAloD0MITRHg9G5HckCUhpRSlGgVS+xoFkdApRMneFcps3V9lChoBmgJaA9DCHaqfM/IInJAlIaUUpRoFU0dAWgWR0ClEy7M5fdAdX2UKGgGaAloD0MIZVWEm8wocUCUhpRSlGgVS79oFkdApRNkMVk+YHV9lChoBmgJaA9DCOc6jbTUunFAlIaUUpRoFUvQaBZHQKUUL2QGOdZ1fZQoaAZoCWgPQwiG5jqNNIBvQJSGlFKUaBVL4GgWR0ClFINfgJkYdX2UKGgGaAloD0MIhxkaTwQ9Y0CUhpRSlGgVTegDaBZHQKUUnZJ04ip1fZQoaAZoCWgPQwgyHqUSXjNwQJSGlFKUaBVLw2gWR0ClFPk2Hck/dX2UKGgGaAloD0MItcTKaGRxcECUhpRSlGgVS/FoFkdApRVQYNy5qnV9lChoBmgJaA9DCGA6rdsgGXFAlIaUUpRoFUvQaBZHQKUVWxVQyh11fZQoaAZoCWgPQwhTswdaAclxQJSGlFKUaBVL7mgWR0ClFYhdt2s8dX2UKGgGaAloD0MIFR3J5T8dZUCUhpRSlGgVTegDaBZHQKUV356+nIh1fZQoaAZoCWgPQwjJIk28wzFyQJSGlFKUaBVNEAFoFkdApRX78DSw4nV9lChoBmgJaA9DCE6Zm2/E4W9AlIaUUpRoFUvEaBZHQKUV+us90Rx1fZQoaAZoCWgPQwiP+1brxBtwQJSGlFKUaBVL0WgWR0ClFiy75Ec9dX2UKGgGaAloD0MI5PVgUrxxcUCUhpRSlGgVS+ZoFkdApRY2qPwNLHV9lChoBmgJaA9DCDZzSGohP29AlIaUUpRoFUvxaBZHQKUWYmCyyD91fZQoaAZoCWgPQwjkTX6LzrZwQJSGlFKUaBVNHwFoFkdApRaQIldC3XV9lChoBmgJaA9DCHnNqzrrknFAlIaUUpRoFUvWaBZHQKUXCpsoDxN1fZQoaAZoCWgPQwigpSvYRjdyQJSGlFKUaBVL0WgWR0ClFzvv0AcUdX2UKGgGaAloD0MIHk/LDxwWc0CUhpRSlGgVTR8BaBZHQKUXSAOrhit1fZQoaAZoCWgPQwj/kenQaQVxQJSGlFKUaBVL1mgWR0ClF2BV2icodX2UKGgGaAloD0MIhpDz/r8hYECUhpRSlGgVTegDaBZHQKUXchMajvd1fZQoaAZoCWgPQwgsnQ/PkphwQJSGlFKUaBVL0WgWR0ClF5h0ZFXrdX2UKGgGaAloD0MIsg5HV6licECUhpRSlGgVS8RoFkdApRe03++/QHV9lChoBmgJaA9DCL+7lSV62XBAlIaUUpRoFUvYaBZHQKUYEabWmP51fZQoaAZoCWgPQwhKQbeXdChyQJSGlFKUaBVLxmgWR0ClGD27voeQdX2UKGgGaAloD0MIp1t2iP9AcECUhpRSlGgVS/1oFkdApRhZQHiWFHV9lChoBmgJaA9DCHWtvU+Vk3FAlIaUUpRoFUvHaBZHQKUYaakyk9F1fZQoaAZoCWgPQwjA6V28H1tuQJSGlFKUaBVLwGgWR0ClGIheHBUJdX2UKGgGaAloD0MIqfdUTntycECUhpRSlGgVS+JoFkdApRi7VSXMQnV9lChoBmgJaA9DCMh8QKCz33JAlIaUUpRoFU0EAWgWR0ClGNH2IwdsdX2UKGgGaAloD0MIizcyj3z7cECUhpRSlGgVS/toFkdApRjP4TK1X3V9lChoBmgJaA9DCN7KEp3lmXFAlIaUUpRoFUvvaBZHQKUZK9rXUYt1fZQoaAZoCWgPQwjmdcQhm0duQJSGlFKUaBVLxWgWR0ClGYLBj4HpdX2UKGgGaAloD0MINsr6zcRmcECUhpRSlGgVS+VoFkdApRm431jAi3V9lChoBmgJaA9DCEZEMXnDDXFAlIaUUpRoFUv+aBZHQKUZyxRl6JJ1fZQoaAZoCWgPQwjXijbHuZVwQJSGlFKUaBVL42gWR0ClGcqWLP2PdX2UKGgGaAloD0MIIxXGFgITcECUhpRSlGgVS+5oFkdApRnJ4D9wWHV9lChoBmgJaA9DCMHFihpMsG5AlIaUUpRoFUvWaBZHQKUZ+gjhUBJ1fZQoaAZoCWgPQwiJesGnebVwQJSGlFKUaBVL6WgWR0ClGg1B2OhkdX2UKGgGaAloD0MIqTEh5tLzckCUhpRSlGgVS8RoFkdApRpM4iosI3V9lChoBmgJaA9DCME24smuCXFAlIaUUpRoFUvXaBZHQKUawpz90ih1fZQoaAZoCWgPQwhxqrUwCzRwQJSGlFKUaBVL4mgWR0ClGx2l/H5rdX2UKGgGaAloD0MIOPktOpnucECUhpRSlGgVS75oFkdApRuMejmCAnV9lChoBmgJaA9DCJVliGOd7XBAlIaUUpRoFUvraBZHQKUbrowmE5B1fZQoaAZoCWgPQwiwOnKkc/RxQJSGlFKUaBVNFAFoFkdApRxAksz2vnV9lChoBmgJaA9DCP/PYb680m1AlIaUUpRoFUu+aBZHQKUcfcry1/l1fZQoaAZoCWgPQwjByMuamLdxQJSGlFKUaBVLymgWR0ClHQ4TCcgAdX2UKGgGaAloD0MI2GFM+rtOcECUhpRSlGgVS+RoFkdApR0TSRbKR3V9lChoBmgJaA9DCHhEheqmxnBAlIaUUpRoFUvgaBZHQKUdHGb1AZ91fZQoaAZoCWgPQwhbsb/snktyQJSGlFKUaBVNbwFoFkdApR08/+sHSnV9lChoBmgJaA9DCD52Fyipam9AlIaUUpRoFUvcaBZHQKUdfxwQ1791fZQoaAZoCWgPQwjshQK2g7ZxQJSGlFKUaBVL+2gWR0ClHY9kJ8fFdX2UKGgGaAloD0MIA7LXu/9XckCUhpRSlGgVS+VoFkdApR4KURnOB3V9lChoBmgJaA9DCJcd4h+27W1AlIaUUpRoFUvkaBZHQKUfHp+tr9F1fZQoaAZoCWgPQwg7j4r/u4luQJSGlFKUaBVNDgFoFkdApR+Q2ycCo3V9lChoBmgJaA9DCL/xtWeWUXJAlIaUUpRoFUvjaBZHQKUfr2f02+B1fZQoaAZoCWgPQwjhQEgWMPVHQJSGlFKUaBVLmWgWR0ClH/ngYP5IdX2UKGgGaAloD0MI6J/gYsWZckCUhpRSlGgVS95oFkdApSCjvE0iyXVlLg=="
|
74 |
+
},
|
75 |
+
"ep_success_buffer": {
|
76 |
+
":type:": "<class 'collections.deque'>",
|
77 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
78 |
+
},
|
79 |
+
"_n_updates": 310,
|
80 |
+
"n_steps": 2048,
|
81 |
+
"gamma": 0.99,
|
82 |
+
"gae_lambda": 0.95,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 10,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null
|
95 |
+
}
|
PPO-LunarLander/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b9bbf8a471649de2945d3773c1061dbc074f831ab44c802fb0739ee1849a3b6e
|
3 |
+
size 87929
|
PPO-LunarLander/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c7c361322f112b66187e25a64388c265d7c4d90a6cfdabf588cb5f52e844f9af
|
3 |
+
size 43393
|
PPO-LunarLander/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
PPO-LunarLander/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.10
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.21.6
|
7 |
+
- Gym: 0.21.0
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 265.76 +/- 44.28
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f75f2524b80>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f75f2524c10>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f75f2524ca0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f75f2524d30>", "_build": "<function ActorCriticPolicy._build at 0x7f75f2524dc0>", "forward": "<function ActorCriticPolicy.forward at 0x7f75f2524e50>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f75f2524ee0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f75f2524f70>", "_predict": "<function ActorCriticPolicy._predict at 0x7f75f2526040>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f75f25260d0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f75f2526160>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f75f25261f0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f75f25a32a0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1675936331745080153, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM1yi7ycvqk/xzYAvsDk5b62dwC892AFvQAAAAAAAAAAGmaavbgWybk2zEi4Nqs8tuJ1Ybsb5nM3AAAAAAAAgD8a4C2+nGxuvKp4V7trCgq4eBrVPdYXXToAAIA/AACAP6aQkT24xuK5xywsue2UELSctTY4phtLOAAAgD8AAAAAUyNGvgVz+ru0dJk6XJMqOA6oVD0KobO5AACAPwAAgD+A6zw99hQiurJeH7PL+z2w71evut71vTMAAIA/AACAP5qzVL3x75g/4xTYvZ88HL85oYm9nlJ7PAAAAAAAAAAAplXpPU0zOj864Ym8FnkDv1vRzz17sQK9AAAAAAAAAACApTm+oWuevGVe9Lu3z4K613MUPlBYTjsAAIA/AACAP0BwCD5PLQW86nXAPKA/lzynEOi5M8SDvQAAgD8AAIA/pl2cPQqtWT5qzna+K7uYvpGHK73z6My9AAAAAAAAAAD9H6E+/WuOP5A+vD5Tywa/++2xPsWbKzsAAAAAAAAAAAAR7bzssq+7bgW+uyOTrTwWQA693PiRPQAAgD8AAIA/yjiQPgT+VT8uA7o9K1z/vmlJqz7QKU29AAAAAAAAAACAmv+9PZc7u4Z3krusmc+5eDRIPHtLszoAAIA/AACAP2YOfL2k9XW7xtXJvDRemTzZe6a8ruaCPQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVNBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIp1zhXa4rcUCUhpRSlIwBbJRNJAKMAXSUR0ClCJRUedTYdX2UKGgGaAloD0MI5US7CikXWUCUhpRSlGgVTegDaBZHQKUImS7oSth1fZQoaAZoCWgPQwh+VS5U/pVyQJSGlFKUaBVNeAFoFkdApQjyD5CWvHV9lChoBmgJaA9DCAfQ7/s3iG9AlIaUUpRoFUvmaBZHQKUI9IJ7b+N1fZQoaAZoCWgPQwhxGw3gre9vQJSGlFKUaBVL1GgWR0ClCR5SvTw2dX2UKGgGaAloD0MIfUELCVhicUCUhpRSlGgVS8xoFkdApQkr8gpz93V9lChoBmgJaA9DCOW4UzpY3nBAlIaUUpRoFUvfaBZHQKUJSGahHsl1fZQoaAZoCWgPQwjGNqloLCNiQJSGlFKUaBVN6ANoFkdApQnie7L+xXV9lChoBmgJaA9DCHEDPj+MPm9AlIaUUpRoFUvRaBZHQKULDvQ4S6F1fZQoaAZoCWgPQwjulXmr7u1wQJSGlFKUaBVNawFoFkdApQvRkZrHl3V9lChoBmgJaA9DCGL4iJhSQHJAlIaUUpRoFUvdaBZHQKUMALncL0B1fZQoaAZoCWgPQwgTEJNwITByQJSGlFKUaBVLxmgWR0ClDAWtEG7jdX2UKGgGaAloD0MInxwFiIIOcUCUhpRSlGgVTaoBaBZHQKUMDjYqXnh1fZQoaAZoCWgPQwiLiGLyhspiQJSGlFKUaBVN6ANoFkdApQwj2tdRi3V9lChoBmgJaA9DCCv8Gd7sNXBAlIaUUpRoFUvHaBZHQKUMP8gIQe51fZQoaAZoCWgPQwimKQKcXnduQJSGlFKUaBVL8mgWR0ClDE+XRgJDdX2UKGgGaAloD0MIXAGFenqLckCUhpRSlGgVS+loFkdApQx7FwT/Q3V9lChoBmgJaA9DCGMK1jhbEHJAlIaUUpRoFU1NAWgWR0ClDI/ub7TEdX2UKGgGaAloD0MIPjxLkFFOc0CUhpRSlGgVS9hoFkdApQyS9RJmNHV9lChoBmgJaA9DCAVqMXiY1W5AlIaUUpRoFUvGaBZHQKUM3OpKjBV1fZQoaAZoCWgPQwjcZFQZhh9yQJSGlFKUaBVNUAFoFkdApQ1k74i5eHV9lChoBmgJaA9DCNPcCmF1gXBAlIaUUpRoFUvraBZHQKUOVpblijN1fZQoaAZoCWgPQwg6kst/yM9tQJSGlFKUaBVLxmgWR0ClDpmsvIwNdX2UKGgGaAloD0MIknh5OleWbUCUhpRSlGgVS8xoFkdApQ7WHpKSPnV9lChoBmgJaA9DCK7TSEslvXBAlIaUUpRoFUvAaBZHQKUO2rFOwgV1fZQoaAZoCWgPQwizQpHu5zpxQJSGlFKUaBVL4WgWR0ClDuKxC6YmdX2UKGgGaAloD0MIhA8lWjIYckCUhpRSlGgVS99oFkdApQ764pc5bXV9lChoBmgJaA9DCAVtcvgke3NAlIaUUpRoFUvOaBZHQKUPPKujh1l1fZQoaAZoCWgPQwjhs3Vw8DVwQJSGlFKUaBVLzmgWR0ClD1JjMFEBdX2UKGgGaAloD0MIeuBjsGKAcUCUhpRSlGgVS/RoFkdApQ+DY7JXAHV9lChoBmgJaA9DCAvPS8UGpXBAlIaUUpRoFU1AAWgWR0ClEHoo3JgcdX2UKGgGaAloD0MIvceZJuyPckCUhpRSlGgVTSQBaBZHQKURBvG6wt91fZQoaAZoCWgPQwhs7X2qysNxQJSGlFKUaBVL+2gWR0ClERvK+zt1dX2UKGgGaAloD0MIz4WRXlSGcECUhpRSlGgVS81oFkdApRG1eMQ2/HV9lChoBmgJaA9DCHjwEwcQuHFAlIaUUpRoFUvvaBZHQKUR/7Vrhzh1fZQoaAZoCWgPQwjHLebnhlByQJSGlFKUaBVNfAFoFkdApRIENWluWXV9lChoBmgJaA9DCE/MejHURHFAlIaUUpRoFUvLaBZHQKUSFFI/Z/V1fZQoaAZoCWgPQwht4Xmp2NhvQJSGlFKUaBVL42gWR0ClEktx+8XfdX2UKGgGaAloD0MIDhZO0vzibUCUhpRSlGgVS+9oFkdApRKDytmthnV9lChoBmgJaA9DCFKco44OtG9AlIaUUpRoFUvvaBZHQKUS5dVNpM91fZQoaAZoCWgPQwiDiNS0y2xxQJSGlFKUaBVL7mgWR0ClEvfU4JeFdX2UKGgGaAloD0MITRHg9G5HckCUhpRSlGgVS+xoFkdApRMneFcps3V9lChoBmgJaA9DCHaqfM/IInJAlIaUUpRoFU0dAWgWR0ClEy7M5fdAdX2UKGgGaAloD0MIZVWEm8wocUCUhpRSlGgVS79oFkdApRNkMVk+YHV9lChoBmgJaA9DCOc6jbTUunFAlIaUUpRoFUvQaBZHQKUUL2QGOdZ1fZQoaAZoCWgPQwiG5jqNNIBvQJSGlFKUaBVL4GgWR0ClFINfgJkYdX2UKGgGaAloD0MIhxkaTwQ9Y0CUhpRSlGgVTegDaBZHQKUUnZJ04ip1fZQoaAZoCWgPQwgyHqUSXjNwQJSGlFKUaBVLw2gWR0ClFPk2Hck/dX2UKGgGaAloD0MItcTKaGRxcECUhpRSlGgVS/FoFkdApRVQYNy5qnV9lChoBmgJaA9DCGA6rdsgGXFAlIaUUpRoFUvQaBZHQKUVWxVQyh11fZQoaAZoCWgPQwhTswdaAclxQJSGlFKUaBVL7mgWR0ClFYhdt2s8dX2UKGgGaAloD0MIFR3J5T8dZUCUhpRSlGgVTegDaBZHQKUV356+nIh1fZQoaAZoCWgPQwjJIk28wzFyQJSGlFKUaBVNEAFoFkdApRX78DSw4nV9lChoBmgJaA9DCE6Zm2/E4W9AlIaUUpRoFUvEaBZHQKUV+us90Rx1fZQoaAZoCWgPQwiP+1brxBtwQJSGlFKUaBVL0WgWR0ClFiy75Ec9dX2UKGgGaAloD0MI5PVgUrxxcUCUhpRSlGgVS+ZoFkdApRY2qPwNLHV9lChoBmgJaA9DCDZzSGohP29AlIaUUpRoFUvxaBZHQKUWYmCyyD91fZQoaAZoCWgPQwjkTX6LzrZwQJSGlFKUaBVNHwFoFkdApRaQIldC3XV9lChoBmgJaA9DCHnNqzrrknFAlIaUUpRoFUvWaBZHQKUXCpsoDxN1fZQoaAZoCWgPQwigpSvYRjdyQJSGlFKUaBVL0WgWR0ClFzvv0AcUdX2UKGgGaAloD0MIHk/LDxwWc0CUhpRSlGgVTR8BaBZHQKUXSAOrhit1fZQoaAZoCWgPQwj/kenQaQVxQJSGlFKUaBVL1mgWR0ClF2BV2icodX2UKGgGaAloD0MIhpDz/r8hYECUhpRSlGgVTegDaBZHQKUXchMajvd1fZQoaAZoCWgPQwgsnQ/PkphwQJSGlFKUaBVL0WgWR0ClF5h0ZFXrdX2UKGgGaAloD0MIsg5HV6licECUhpRSlGgVS8RoFkdApRe03++/QHV9lChoBmgJaA9DCL+7lSV62XBAlIaUUpRoFUvYaBZHQKUYEabWmP51fZQoaAZoCWgPQwhKQbeXdChyQJSGlFKUaBVLxmgWR0ClGD27voeQdX2UKGgGaAloD0MIp1t2iP9AcECUhpRSlGgVS/1oFkdApRhZQHiWFHV9lChoBmgJaA9DCHWtvU+Vk3FAlIaUUpRoFUvHaBZHQKUYaakyk9F1fZQoaAZoCWgPQwjA6V28H1tuQJSGlFKUaBVLwGgWR0ClGIheHBUJdX2UKGgGaAloD0MIqfdUTntycECUhpRSlGgVS+JoFkdApRi7VSXMQnV9lChoBmgJaA9DCMh8QKCz33JAlIaUUpRoFU0EAWgWR0ClGNH2IwdsdX2UKGgGaAloD0MIizcyj3z7cECUhpRSlGgVS/toFkdApRjP4TK1X3V9lChoBmgJaA9DCN7KEp3lmXFAlIaUUpRoFUvvaBZHQKUZK9rXUYt1fZQoaAZoCWgPQwjmdcQhm0duQJSGlFKUaBVLxWgWR0ClGYLBj4HpdX2UKGgGaAloD0MINsr6zcRmcECUhpRSlGgVS+VoFkdApRm431jAi3V9lChoBmgJaA9DCEZEMXnDDXFAlIaUUpRoFUv+aBZHQKUZyxRl6JJ1fZQoaAZoCWgPQwjXijbHuZVwQJSGlFKUaBVL42gWR0ClGcqWLP2PdX2UKGgGaAloD0MIIxXGFgITcECUhpRSlGgVS+5oFkdApRnJ4D9wWHV9lChoBmgJaA9DCMHFihpMsG5AlIaUUpRoFUvWaBZHQKUZ+gjhUBJ1fZQoaAZoCWgPQwiJesGnebVwQJSGlFKUaBVL6WgWR0ClGg1B2OhkdX2UKGgGaAloD0MIqTEh5tLzckCUhpRSlGgVS8RoFkdApRpM4iosI3V9lChoBmgJaA9DCME24smuCXFAlIaUUpRoFUvXaBZHQKUawpz90ih1fZQoaAZoCWgPQwhxqrUwCzRwQJSGlFKUaBVL4mgWR0ClGx2l/H5rdX2UKGgGaAloD0MIOPktOpnucECUhpRSlGgVS75oFkdApRuMejmCAnV9lChoBmgJaA9DCJVliGOd7XBAlIaUUpRoFUvraBZHQKUbrowmE5B1fZQoaAZoCWgPQwiwOnKkc/RxQJSGlFKUaBVNFAFoFkdApRxAksz2vnV9lChoBmgJaA9DCP/PYb680m1AlIaUUpRoFUu+aBZHQKUcfcry1/l1fZQoaAZoCWgPQwjByMuamLdxQJSGlFKUaBVLymgWR0ClHQ4TCcgAdX2UKGgGaAloD0MI2GFM+rtOcECUhpRSlGgVS+RoFkdApR0TSRbKR3V9lChoBmgJaA9DCHhEheqmxnBAlIaUUpRoFUvgaBZHQKUdHGb1AZ91fZQoaAZoCWgPQwhbsb/snktyQJSGlFKUaBVNbwFoFkdApR08/+sHSnV9lChoBmgJaA9DCD52Fyipam9AlIaUUpRoFUvcaBZHQKUdfxwQ1791fZQoaAZoCWgPQwjshQK2g7ZxQJSGlFKUaBVL+2gWR0ClHY9kJ8fFdX2UKGgGaAloD0MIA7LXu/9XckCUhpRSlGgVS+VoFkdApR4KURnOB3V9lChoBmgJaA9DCJcd4h+27W1AlIaUUpRoFUvkaBZHQKUfHp+tr9F1fZQoaAZoCWgPQwg7j4r/u4luQJSGlFKUaBVNDgFoFkdApR+Q2ycCo3V9lChoBmgJaA9DCL/xtWeWUXJAlIaUUpRoFUvjaBZHQKUfr2f02+B1fZQoaAZoCWgPQwjhQEgWMPVHQJSGlFKUaBVLmWgWR0ClH/ngYP5IdX2UKGgGaAloD0MI6J/gYsWZckCUhpRSlGgVS95oFkdApSCjvE0iyXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (201 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 265.76383637780265, "std_reward": 44.27866929774069, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-09T10:20:25.191081"}
|