nilcars's picture
Initial commit with model files
40ed493
|
raw
history blame
86.5 kB
metadata
base_model: sentence-transformers/all-mpnet-base-v2
library_name: setfit
metrics:
  - accuracy
pipeline_tag: text-classification
tags:
  - setfit
  - sentence-transformers
  - text-classification
  - generated_from_setfit_trainer
widget:
  - text: "How to get single UnidirectionalSequenceRnnOp in tflite model ### Issue Type\r\n\r\nSupport\r\n\r\n### Source\r\n\r\nsource\r\n\r\n### Tensorflow Version\r\n\r\n2.8\r\n\r\n### Custom Code\r\n\r\nYes\r\n\r\n### OS Platform and Distribution\r\n\r\nUbuntu 18.04\r\n\r\nAccording to https://github.com/tensorflow/tensorflow/blob/master/tensorflow/compiler/mlir/lite/python/tf_tfl_flatbuffer_helpers.cc there is `kUnidirectionalSequenceRnnOp` as a single operation in tflite, could you give a python code example - how can I get this? For example - this code for LSTM gives tflite with one UnidirectionalSequenceLSTM Op.\r\n```py\r\n# NOTE tested with TF 2.8.0\r\nimport tensorflow as tf\r\nimport numpy as np\r\n\r\nfrom tensorflow import keras\r\n\r\n\r\nmodel = keras.Sequential()\r\nshape = (4, 4)\r\n\r\nmodel.add(keras.layers.InputLayer(input_shape=shape, batch_size=1))\r\nmodel.add(keras.layers.LSTM(2, input_shape=shape))\r\n```\r\n![image](https://user-images.githubusercontent.com/4616940/197647526-59c63de2-df61-46a1-bd61-75baa2688376.png)\r\nHow can I do same for UnidirectionalSequenceRnn?"
  - text: "[Feature Request] GELU activation with the Hexagon delegate **System information**\r\n- OS Platform and Distribution (e.g., Linux Ubuntu 16.04): Ubuntu 20.04\r\n- TensorFlow installed from (source or binary): binary\r\n- TensorFlow version (or github SHA if from source): 2.9.1\r\n\r\nI think I'd be able to implement this myself, but wanted to see if there was any interest in including this upstream.  Most of this I'm writing out to make sure my own understanding is correct.\r\n\r\n### The problem\r\n\r\nI'd like to add support for the GELU op to the Hexagon Delegate.  The motivation for this is mostly for use with [DistilBERT](https://huggingface.co/distilbert-base-multilingual-cased), which uses this activation function in its feedforward network layers.  (Also used by BERT, GPT-3, RoBERTa, etc.)\r\n\r\nAdding this as a supported op for the Hexagon delegate would avoid creating a graph partition/transferring between DSP<-->CPU each time the GELU activation function is used.\r\n\r\n### How I'd implement this\r\n\r\nGELU in TF Lite is implemented as a lookup table when there are integer inputs ([here](https://github.com/tensorflow/tensorflow/blob/master/tensorflow/lite/kernels/activations.cc#L120-L140) and [here](https://github.com/tensorflow/tensorflow/blob/master/tensorflow/lite/kernels/internal/reference/gelu.h#L37-L53)).\r\n\r\nThis same approach could be used for the Hexagon delegate, as it has int8/uint8 data types and also supports lookup tables.\r\n\r\nI'd plan to do this by adding a new op builder in the delegate, populating a lookup table for each node as is currently done for the CPU version of the op, and then using the [Gather_8](https://source.codeaurora.org/quic/hexagon_nn/nnlib/tree/hexagon/ops/src/op_gather.c)  nnlib library function to do the lookup.\r\n\r\n### Possible workaround\r\n\r\nA workaround I thought of:\r\n\r\nI'm going to try removing the [pattern matching](https://github.com/tensorflow/tensorflow/blob/master/tensorflow/compiler/mlir/lite/transforms/optimize_patterns.td#L1034-L1095) for approximate GELU in MLIR, and then using the approximate version of GELU (so that using tanh and not Erf).  This will probably be slower, but should let me keep execution on the DSP.\r\n\r\nSince this will then be tanh, addition, multiplication ops instead of GELU they should all be runnable by the DSP."
  - text: >-
      Data init API for TFLite Swift <details><summary>Click to
      expand!</summary> 
       
       ### Issue Type

      Feature Request


      ### Source


      source


      ### Tensorflow Version


      2.8+


      ### Custom Code


      No


      ### OS Platform and Distribution


      _No response_


      ### Mobile device


      _No response_


      ### Python version


      _No response_


      ### Bazel version


      _No response_


      ### GCC/Compiler version


      _No response_


      ### CUDA/cuDNN version


      _No response_


      ### GPU model and memory


      _No response_


      ### Current Behaviour?


      ```shell

      The current Swift API only has `init` functions from files on disk unlike
      the Java (Android) API which has a byte buffer initializer. It'd be
      convenient if the Swift API could initialize `Interpreters` from `Data`.

      ```



      ### Standalone code to reproduce the issue


      ```shell

      No code. This is a feature request

      ```



      ### Relevant log output


      _No response_</details>
  - text: "tf.distribute.MirroredStrategy for asynchronous training <details><summary>Click to expand!</summary> \r\n \r\n ### Issue Type\r\n\r\nFeature Request\r\n\r\n### Tensorflow Version\r\n\r\n2.8.1\r\n\r\n### Python version\r\n\r\n3.8.13\r\n\r\n### CUDA/cuDNN version\r\n\r\n11.8\r\n\r\n### Use Case\r\n\r\nI need to run multiple asynchronous copies of the same model on different slices of the dataset (e.g. with bootstrap sampling). There's no *good* way to do this in keras api that I'm aware of, although a couple of hacks exist. Would this use case be feasible with tf.distribute?\r\n\r\n### Feature Request\r\n\r\n`tf.distribute.MirroredStrategy` is a synchronous, data parallel strategy for distributed training across multiple devices on a single host worker.\r\n\r\nWould it be possible to modify this strategy to allow for asynchronous training of all model replicas, without computing the average gradient over all replicas to update weights? In this case each replica would need its own un-mirrored copy of model weights, and the update rule would depend only on the loss and gradients of each replica.\r\n\r\nThanks"
  - text: "Build TensorFlow Lite for iOS failed!!!! Please go to Stack Overflow for help and support:\r\n\r\nhttps://stackoverflow.com/questions/tagged/tensorflow\r\n\r\nIf you open a GitHub issue, here is our policy:\r\n\r\n1. `bazel build --config=ios_arm64 -c opt --cxxopt=--std=c++17 \\\\\r\n  //tensorflow/lite/ios:TensorFlowLiteC_framework\r\n❯ bazel build --incompatible_run_shell_command_string=false --verbose_failures --config=ios_arm64 -c opt //tensorflow/lite/ios:TensorFlowLiteCMetal_framework\r\nINFO: Options provided by the client:\r\n  Inherited 'common' options: --isatty=1 --terminal_columns=170\r\nINFO: Reading rc options for 'build' from /Users/thao/Desktop/tensorflow/.bazelrc:\r\n  Inherited 'common' options: --experimental_repo_remote_exec\r\nINFO: Reading rc options for 'build' from /Users/thao/Desktop/tensorflow/.bazelrc:\r\n  'build' options: --define framework_shared_object=true --define tsl_protobuf_header_only=true --define=use_fast_cpp_protos=true --define=allow_oversize_protos=true --spawn_strategy=standalone -c opt --announce_rc --define=grpc_no_ares=true --noincompatible_remove_legacy_whole_archive --enable_platform_specific_config --define=with_xla_support=true --config=short_logs --config=v2 --define=no_aws_support=true --define=no_hdfs_support=true --experimental_cc_shared_library --experimental_link_static_libraries_once=false\r\nINFO: Reading rc options for 'build' from /Users/thao/Desktop/tensorflow/.tf_configure.bazelrc:\r\n  'build' options: --action_env PYTHON_BIN_PATH=/Users/thao/miniforge3/bin/python --action_env PYTHON_LIB_PATH=/Users/thao/miniforge3/lib/python3.10/site-packages --python_path=/Users/thao/miniforge3/bin/python\r\nINFO: Reading rc options for 'build' from /Users/thao/Desktop/tensorflow/.bazelrc:\r\n  'build' options: --deleted_packages=tensorflow/compiler/mlir/tfrt,tensorflow/compiler/mlir/tfrt/benchmarks,tensorflow/compiler/mlir/tfrt/jit/python_binding,tensorflow/compiler/mlir/tfrt/jit/transforms,tensorflow/compiler/mlir/tfrt/python_tests,tensorflow/compiler/mlir/tfrt/tests,tensorflow/compiler/mlir/tfrt/tests/ir,tensorflow/compiler/mlir/tfrt/tests/analysis,tensorflow/compiler/mlir/tfrt/tests/jit,tensorflow/compiler/mlir/tfrt/tests/lhlo_to_tfrt,tensorflow/compiler/mlir/tfrt/tests/lhlo_to_jitrt,tensorflow/compiler/mlir/tfrt/tests/tf_to_corert,tensorflow/compiler/mlir/tfrt/tests/tf_to_tfrt_data,tensorflow/compiler/mlir/tfrt/tests/saved_model,tensorflow/compiler/mlir/tfrt/transforms/lhlo_gpu_to_tfrt_gpu,tensorflow/core/runtime_fallback,tensorflow/core/runtime_fallback/conversion,tensorflow/core/runtime_fallback/kernel,tensorflow/core/runtime_fallback/opdefs,tensorflow/core/runtime_fallback/runtime,tensorflow/core/runtime_fallback/util,tensorflow/core/tfrt/common,tensorflow/core/tfrt/eager,tensorflow/core/tfrt/eager/backends/cpu,tensorflow/core/tfrt/eager/backends/gpu,tensorflow/core/tfrt/eager/core_runtime,tensorflow/core/tfrt/eager/cpp_tests/core_runtime,tensorflow/core/tfrt/gpu,tensorflow/core/tfrt/run_handler_thread_pool,tensorflow/core/tfrt/runtime,tensorflow/core/tfrt/saved_model,tensorflow/core/tfrt/graph_executor,tensorflow/core/tfrt/saved_model/tests,tensorflow/core/tfrt/tpu,tensorflow/core/tfrt/utils\r\nINFO: Found applicable config definition build:short_logs in file /Users/thao/Desktop/tensorflow/.bazelrc: --output_filter=DONT_MATCH_ANYTHING\r\nINFO: Found applicable config definition build:v2 in file /Users/thao/Desktop/tensorflow/.bazelrc: --define=tf_api_version=2 --action_env=TF2_BEHAVIOR=1\r\nINFO: Found applicable config definition build:ios_arm64 in file /Users/thao/Desktop/tensorflow/.bazelrc: --config=ios --cpu=ios_arm64\r\nINFO: Found applicable config definition build:ios in file /Users/thao/Desktop/tensorflow/.bazelrc: --apple_platform_type=ios --apple_bitcode=embedded --copt=-fembed-bitcode --copt=-Wno-c++11-narrowing --noenable_platform_specific_config --copt=-w --cxxopt=-std=c++17 --host_cxxopt=-std=c++17 --define=with_xla_support=false\r\nINFO: Build option --cxxopt has changed, discarding analysis cache.\r\nERROR: /private/var/tmp/_bazel_thao/26d40dc75f2c247e7283b353a9ab184f/external/local_config_cc/BUILD:48:19: in cc_toolchain_suite rule @local_config_cc//:toolchain: cc_toolchain_suite '@local_config_cc//:toolchain' does not contain a toolchain for cpu 'ios_arm64'\r\nERROR: /private/var/tmp/_bazel_thao/26d40dc75f2c247e7283b353a9ab184f/external/local_config_cc/BUILD:48:19: Analysis of target '@local_config_cc//:toolchain' failed\r\nERROR: Analysis of target '//tensorflow/lite/ios:TensorFlowLiteCMetal_framework' failed; build aborted: \r\nINFO: Elapsed time: 45.455s\r\nINFO: 0 processes.\r\nFAILED: Build did NOT complete successfully (66 packages loaded, 1118 targets configured)`\r\n\r\n**Here's why we have that policy**: TensorFlow developers respond to issues. We want to focus on work that benefits the whole community, e.g., fixing bugs and adding features. Support only helps individuals. GitHub also notifies thousands of people when issues are filed. We want them to see you communicating an interesting problem, rather than being redirected to Stack Overflow.\r\n\r\n------------------------\r\n\r\n### System information\r\nMacOS-M1Max : 13.3\r\nTensorflow:2.9.2\r\nPython: 3.10.0\r\n\r\n\r\n\r\n### Describe the problem\r\nDescribe the problem clearly here. Be sure to convey here why it's a bug in TensorFlow or a feature request.\r\n\r\n### Source code / logs\r\nInclude any logs or source code that would be helpful to diagnose the problem. If including tracebacks, please include the full traceback. Large logs and files should be attached. Try to provide a reproducible test case that is the bare minimum necessary to generate the problem.\r\n"
inference: true

SetFit with sentence-transformers/all-mpnet-base-v2

This is a SetFit model that can be used for Text Classification. This SetFit model uses sentence-transformers/all-mpnet-base-v2 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

  1. Fine-tuning a Sentence Transformer with contrastive learning.
  2. Training a classification head with features from the fine-tuned Sentence Transformer.

Model Details

Model Description

Model Sources

Model Labels

Label Examples
question
  • "Parse output of mobile_ssd_v2_float_coco.tflite ### Issue type\n\nSupport\n\n### Have you reproduced the bug with TensorFlow Nightly?\n\nNo\n\n### Source\n\nsource\n\n### TensorFlow version\n\nv2.11.1\n\n### Custom code\n\nYes\n\n### OS platform and distribution\n\nLinux Ubuntu 20.04\n\n### Mobile device\n\nAndroid\n\n### Python version\n\n_No response_\n\n### Bazel version\n\n6.2.0\n\n### GCC/compiler version\n\n12\n\n### CUDA/cuDNN version\n\n_No response_\n\n### GPU model and memory\n\n_No response_\n\n### Current behavior?\n\nI'm trying to use the model mobile_ssd_v2_float_coco.tflite on a C++ application, I'm able to execute the inference and get the results.\r\n\r\nBased on the Netron app I see that its output is:\r\nimage\r\n\r\nBut I couldn't find an example code showing how to parse this output.\r\n\r\nI tried to look into https://github.com/tensorflow/tensorflow/issues/29054 and https://github.com/tensorflow/tensorflow/issues/40298 but the output of the model is different from the one provided here.\r\n\r\nDo you have any example code available in Java, Python, or even better in C++ to parse this model output?\n\n### Standalone code to reproduce the issue\n\nshell\nNo example code is available to parse the output of mobile_ssd_v2_float_coco.tflite.\n\n\n\n### Relevant log output\n\n_No response_"
  • 'Tensorflow Lite library is crashing in WASM library at 3rd inference
    Click to expand! \r\n \r\n ### Issue Type\r\n\r\nSupport\r\n\r\n### Have you reproduced the bug with TF nightly?\r\n\r\nYes\r\n\r\n### Source\r\n\r\nsource\r\n\r\n### Tensorflow Version\r\n\r\n2.7.0\r\n\r\n### Custom Code\r\n\r\nYes\r\n\r\n### OS Platform and Distribution\r\n\r\nEmscripten, Ubuntu 18.04\r\n\r\n### Mobile device\r\n\r\n_No response_\r\n\r\n### Python version\r\n\r\n_No response_\r\n\r\n### Bazel version\r\n\r\n_No response_\r\n\r\n### GCC/Compiler version\r\n\r\n_No response_\r\n\r\n### CUDA/cuDNN version\r\n\r\n_No response_\r\n\r\n### GPU model and memory\r\n\r\n_No response_\r\n\r\n### Current Behaviour?\r\n\r\nshell\r\nHello! I have C++ code that I want to deploy as WASM library and this code contains TFLite library. I have compiled TFLite library with XNNPack support using Emscripten toolchain quite easy, so no issue there. I have a leight-weight convolution+dense model that runs perfectly on Desktop, but I am starting having problems in the browser.\r\n\r\nIn 99% of cases I have an error on the third inference:\r\n\r\nUncaught RuntimeError: memory access out of bounds\r\n\r\nThrough some trivial debugging I have found out that the issue comes from _interpreter->Invoke() method. Does not matter if I put any input or not, I just need to call Invoke() three times and I have a crash.\r\n\r\nFirst thing first: I decided to add more memory to my WASM library by adding this line to CMake:\r\n\r\nSET(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -s TOTAL_STACK=134217728 -s TOTAL_MEMORY=268435456")\r\nSET(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -s TOTAL_STACK=134217728 -s TOTAL_MEMORY=268435456")\r\n\r\n128 MB and 256 MB in total for 1 MB model - I think this is more than enough. And on top of that, I am allowing Memory Growth. But unfortunately, I have exactly the same issue.\r\n\r\nI am beating on this problem for 2 weeks straight and at this stage I have no clue how to fix it. Also I have tried to set custom allocation using TfLiteCustomAllocation but in this case I have a crash on the very first inference. I guess I was not using it right, but unfortunately I couldn\'t find even one tutorial describing how to apply custom allocation in TFLite.\r\n\r\nI said that I have a crash in 99% of cases. There was one time when WASM library worked and inference worked as well. It happens just randomly once, and I couldn\'t reproduce it anymore.\r\n\r\n\r\n\r\n### Standalone code to reproduce the issue\r\n\r\n```shell\r\nHere is the code that does TFLite inference\r\n\r\n\r\n#include \r\n#include "tflite_model.h"\r\n#include \r\n\r\n#include "tensorflow/lite/interpreter.h"\r\n#include "tensorflow/lite/util.h"\r\n\r\nnamespace tracker {\r\n\r\n#ifdef EMSCRIPTEN\r\n\tvoid TFLiteModel::init(std::stringstream& stream) {\r\n\r\n\t\tstd::string img_str = stream.str();\r\n\t\tstd::vector img_model_data(img_str.size());\r\n\t\tstd::copy(img_str.begin(), img_str.end(), img_model_data.begin());\r\n\r\n\t\t_model = tflite::FlatBufferModel::BuildFromBuffer(img_str.data(), img_str.size());\r\n#else\r\n\tvoid TFLiteModel::init(const std::string& path) {\r\n\t\t_model = tflite::FlatBufferModel::BuildFromFile(path.c_str());\r\n\r\n#endif\r\n\r\n\t\ttflite::ops::builtin::BuiltinOpResolver resolver;\r\n\t\ttflite::InterpreterBuilder(*_model, resolver)(&_interpreter);\r\n\r\n\t\t_interpreter->AllocateTensors();\r\n\r\n\t\t/for (int i = 0; i < _interpreter->tensors_size(); i++) {\r\n\t\t\tTfLiteTensor tensor = _interpreter->tensor(i);\r\n\r\n\t\t\tif (tensor->allocation_type == kTfLiteArenaRw
feature
  • 'tf.keras.optimizers.experimental.AdamW only support constant weight_decay
    Click to expand! \n \n ### Issue Type\n\nFeature Request\n\n### Source\n\nsource\n\n### Tensorflow Version\n\n2.8\n\n### Custom Code\n\nNo\n\n### OS Platform and Distribution\n\n_No response_\n\n### Mobile device\n\n_No response_\n\n### Python version\n\n_No response_\n\n### Bazel version\n\n_No response_\n\n### GCC/Compiler version\n\n_No response_\n\n### CUDA/cuDNN version\n\n_No response_\n\n### GPU model and memory\n\n_No response_\n\n### Current Behaviour?\n\nshell\ntf.keras.optimizers.experimental.AdamW only supports constant weight decay. But usually we want the weight_decay value to decay with learning rate schedule.\n\n\n\n### Standalone code to reproduce the issue\n\nshell\nThe legacy tfa.optimizers.AdamW supports callable weight_decay, which is much better.\n\n\n\n### Relevant log output\n\n_No response_
    '
  • 'RFE tensorflow-aarch64==2.6.0 build ? System information\r\n TensorFlow version (you are using): 2.6.0\r\n- Are you willing to contribute it (Yes/No): Yes\r\n\r\n**Describe the feature and the current behavior/state.\r\n\r\nBrainchip Akida AKD1000 SNN neuromorphic MetaTF SDK support 2.6.0 on x86_64. They claim support for aarch64, but when creating a virtualenv it fails on aarch64 due to lacking tensorflow-aarc64==2.6.0 build.\r\n\r\nWill this change the current api? How?\r\n\r\nNA\r\n\r\nWho will benefit with this feature?\r\n\r\nCustomer of Brainchip Akida who run on Arm64 platforms.\r\n\r\nAny Other info.**\r\n\r\nhttps://doc.brainchipinc.com/installation.html\r\n\r\n\r\n'
  • "How to calculate 45 degree standing position of body from camera in swift (Pose estimation)
    Click to expand! \n \n ### Issue Type\n\nFeature Request\n\n### Source\n\nsource\n\n### Tensorflow Version\n\npod 'TensorFlowLiteSwift', '~> 0.0.1-nightly', :subspecs => ['CoreML', 'Metal']\n\n### Custom Code\n\nYes\n\n### OS Platform and Distribution\n\n_No response_\n\n### Mobile device\n\n_No response_\n\n### Python version\n\n_No response_\n\n### Bazel version\n\n_No response_\n\n### GCC/Compiler version\n\n_No response_\n\n### CUDA/cuDNN version\n\n_No response_\n\n### GPU model and memory\n\n_No response_\n\n### Current Behaviour?\n\nshell\nHow to calculate 45 degree standing position of body from camera in swift.\n\n\n\n### Standalone code to reproduce the issue\n\nshell\nHow to calculate 45 degree standing position of body from camera in swift using the body keypoints. (Pose estimation)\n\n\n\n### Relevant log output\n\n_No response_
    "
bug
  • 'Abort when running tensorflow.python.ops.gen_array_ops.depth_to_space ### Issue type\n\nBug\n\n### Have you reproduced the bug with TensorFlow Nightly?\n\nNo\n\n### Source\n\nbinary\n\n### TensorFlow version\n\n2.11.0\n\n### Custom code\n\nYes\n\n### OS platform and distribution\n\n22.04\n\n### Mobile device\n\n_No response_\n\n### Python version\n\n3.9\n\n### Bazel version\n\n_No response_\n\n### GCC/compiler version\n\n_No response_\n\n### CUDA/cuDNN version\n\nnvidia-cudnn-cu11==8.6.0.163, cudatoolkit=11.8.0\n\n### GPU model and memory\n\n_No response_\n\n### Current behavior?\n\nDue to very large integer argument\n\n### Standalone code to reproduce the issue\n\nshell\nimport tensorflow as tf\r\nimport os\r\nimport numpy as np\r\nfrom tensorflow.python.ops import gen_array_ops\r\ntry:\r\n arg_0_tensor = tf.random.uniform([3, 2, 3, 4], dtype=tf.float32)\r\n arg_0 = tf.identity(arg_0_tensor)\r\n arg_1 = 2147483647\r\n arg_2 = "NHWC"\r\n out = gen_array_ops.depth_to_space(arg_0,arg_1,arg_2,)\r\nexcept Exception as e:\r\n print("Error:"+str(e))\r\n\r\n\n\n\n\n### Relevant log output\n\nshell\n023-08-13 00:23:53.644564: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Cannot dlopen some TensorRT libraries. If you would like to use Nvidia GPU with TensorRT, please make sure the missing libraries mentioned above are installed properly.\r\n2023-08-13 00:23:54.491071: I tensorflow/compiler/xla/stream_executor/cuda/cuda_gpu_executor.cc:981] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero\r\n2023-08-13 00:23:54.510564: I tensorflow/compiler/xla/stream_executor/cuda/cuda_gpu_executor.cc:981] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero\r\n2023-08-13 00:23:54.510736: I tensorflow/compiler/xla/stream_executor/cuda/cuda_gpu_executor.cc:981] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero\r\n2023-08-13 00:23:54.511051: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 FMA\r\nTo enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.\r\n2023-08-13 00:23:54.511595: I tensorflow/compiler/xla/stream_executor/cuda/cuda_gpu_executor.cc:981] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero\r\n2023-08-13 00:23:54.511717: I tensorflow/compiler/xla/stream_executor/cuda/cuda_gpu_executor.cc:981] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero\r\n2023-08-13 00:23:54.511830: I tensorflow/compiler/xla/stream_executor/cuda/cuda_gpu_executor.cc:981] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero\r\n2023-08-13 00:23:54.572398: I tensorflow/compiler/xla/stream_executor/cuda/cuda_gpu_executor.cc:981] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero\r\n2023-08-13 00:23:54.572634: I tensorflow/compiler/xla/stream_executor/cuda/cuda_gpu_executor.cc:981] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero\r\n2023-08-13 00:23:54.572791: I tensorflow/compiler/xla/stream_executor/cuda/cuda_gpu_executor.cc:981] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero\r\n2023-08-13 00:23:54.572916: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1613] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 153 MB memory: -> device: 0, name: NVIDIA GeForce GTX 1660 Ti, pci bus id: 0000:01:00.0, compute capability: 7.5\r\n2023-08-13 00:23:54.594062: I tensorflow/compiler/xla/stream_executor/cuda/cuda_driver.cc:735] failed to allocate 153.88M (161349632 bytes) from device: CUDA_ERROR_OUT_OF_MEMORY: out of memory\r\n2023-08-13 00:23:54.594484: I tensorflow/compiler/xla/stream_executor/cuda/cuda_driver.cc:735] failed to allocate 138.49M (145214720 bytes) from device: CUDA_ERROR_OUT_OF_MEMORY: out of memory\r\n2023-08-13 00:23:54.600623: F tensorflow/core/framework/tensor_shape.cc:201] Non-OK-status: InitDims(dim_sizes) status: INVALID_ARGUMENT: Expected a non-negative size, got -2\r\nAborted\r\n\r\n\n\n'
  • "float8 (both e4m3fn and e5m2) missing from numbertype ### Issue Type\r\n\r\nBug\r\n\r\n### Have you reproduced the bug with TF nightly?\r\n\r\nNo\r\n\r\n### Source\r\n\r\nbinary\r\n\r\n### Tensorflow Version\r\n\r\n2.12.0\r\n\r\n### Custom Code\r\n\r\nYes\r\n\r\n### OS Platform and Distribution\r\n\r\nmacOS-13.2.1-arm64-arm-64bit\r\n\r\n### Mobile device\r\n\r\n_No response_\r\n\r\n### Python version\r\n\r\n3.9.6\r\n\r\n### Bazel version\r\n\r\n_No response_\r\n\r\n### GCC/Compiler version\r\n\r\n_No response_\r\n\r\n### CUDA/cuDNN version\r\n\r\n_No response_\r\n\r\n### GPU model and memory\r\n\r\n_No response_\r\n\r\n### Current Behaviour?\r\n\r\nFP8 datatypes are missing from kNumberTypes in tensorflow/core/framework/types.h, and also missing from TF_CALL_FLOAT_TYPES(m) in tensorflow/core/framework/register_types.h. This causes simple ops (like slice, transpose, split, etc.) to raise NotFoundError.\r\n\r\n### Standalone code to reproduce the issue\r\n\r\npython\r\nimport tensorflow as tf\r\nfrom tensorflow.python.framework import dtypes\r\n\r\na = tf.constant([[1.2345678, 2.3456789, 3.4567891], [4.5678912, 5.6789123, 6.7891234]], dtype=dtypes.float16)\r\nprint(a)\r\n\r\na_fp8 = tf.cast(a, dtypes.float8_e4m3fn)\r\nprint(a_fp8)\r\n\r\nb = a_fp8[1:2] # tensorflow.python.framework.errors_impl.NotFoundError\r\nb = tf.transpose(a_fp8, [1, 0]) # tensorflow.python.framework.errors_impl.NotFoundError\r\n\r\n\r\n\r\n### Relevant log output\r\n\r\n\r\ntensorflow.python.framework.errors_impl.NotFoundError: Could not find device for node: {{node StridedSlice}} = StridedSlice[Index=DT_INT32, T=DT_FLOAT8_E4M3FN, begin_mask=0, ellipsis_mask=0, end_mask=0, new_axis_mask=0, shrink_axis_mask=0]\r\nAll kernels registered for op StridedSlice:\r\n device='XLA_CPU_JIT'; Index in [DT_INT32, DT_INT16, DT_INT64]; T in [DT_FLOAT, DT_DOUBLE, DT_INT32, DT_UINT8, DT_INT16, 930109355527764061, DT_HALF, DT_UINT32, DT_UINT64, DT_FLOAT8_E5M2, DT_FLOAT8_E4M3FN]\r\n device='CPU'; T in [DT_UINT64]\r\n device='CPU'; T in [DT_INT64]\r\n device='CPU'; T in [DT_UINT32]\r\n device='CPU'; T in [DT_UINT16]\r\n device='CPU'; T in [DT_INT16]\r\n device='CPU'; T in [DT_UINT8]\r\n device='CPU'; T in [DT_INT8]\r\n device='CPU'; T in [DT_INT32]\r\n device='CPU'; T in [DT_HALF]\r\n device='CPU'; T in [DT_BFLOAT16]\r\n device='CPU'; T in [DT_FLOAT]\r\n device='CPU'; T in [DT_DOUBLE]\r\n device='CPU'; T in [DT_COMPLEX64]\r\n device='CPU'; T in [DT_COMPLEX128]\r\n device='CPU'; T in [DT_BOOL]\r\n device='CPU'; T in [DT_STRING]\r\n device='CPU'; T in [DT_RESOURCE]\r\n device='CPU'; T in [DT_VARIANT]\r\n device='CPU'; T in [DT_QINT8]\r\n device='CPU'; T in [DT_QUINT8]\r\n device='CPU'; T in [DT_QINT32]\r\n device='DEFAULT'; T in [DT_INT32]\r\n [Op:StridedSlice] name: strided_slice/\r\n\r\n\r\n\r\ntensorflow.python.framework.errors_impl.NotFoundError: Could not find device for node: {{node Transpose}} = Transpose[T=DT_FLOAT8_E4M3FN, Tperm=DT_INT32]\r\nAll kernels registered for op Transpose:\r\n device='XLA_CPU_JIT'; Tperm in [DT_INT32, DT_INT64]; T in [DT_FLOAT, DT_DOUBLE, DT_INT32, DT_UINT8, DT_INT16, 930109355527764061, DT_HALF, DT_UINT32, DT_UINT64, DT_FLOAT8_E5M2, DT_FLOAT8_E4M3FN]\r\n device='CPU'; T in [DT_UINT64]\r\n device='CPU'; T in [DT_INT64]\r\n device='CPU'; T in [DT_UINT32]\r\n device='CPU'; T in [DT_UINT16]\r\n device='CPU'; T in [DT_INT16]\r\n device='CPU'; T in [DT_UINT8]\r\n device='CPU'; T in [DT_INT8]\r\n device='CPU'; T in [DT_INT32]\r\n device='CPU'; T in [DT_HALF]\r\n device='CPU'; T in [DT_BFLOAT16]\r\n device='CPU'; T in [DT_FLOAT]\r\n device='CPU'; T in [DT_DOUBLE]\r\n device='CPU'; T in [DT_COMPLEX64]\r\n device='CPU'; T in [DT_COMPLEX128]\r\n device='CPU'; T in [DT_BOOL]\r\n device='CPU'; T in [DT_STRING]\r\n device='CPU'; T in [DT_RESOURCE]\r\n device='CPU'; T in [DT_VARIANT]\r\n [Op:Transpose]\r\n"
  • "My customized OP gives incorrect outputs on GPUs since tf-nightly 2.13.0.dev20230413 ### Issue type\n\nBug\n\n### Have you reproduced the bug with TensorFlow Nightly?\n\nYes\n\n### Source\n\nbinary\n\n### TensorFlow version\n\n2.13\n\n### Custom code\n\nYes\n\n### OS platform and distribution\n\nfedora 36\n\n### Mobile device\n\n_No response_\n\n### Python version\n\n3.11.4\n\n### Bazel version\n\n_No response_\n\n### GCC/compiler version\n\n_No response_\n\n### CUDA/cuDNN version\n\n_No response_\n\n### GPU model and memory\n\n_No response_\n\n### Current behavior?\n\nI have a complex program based on TensorFlow with several customized OPs. These OPs were created following https://www.tensorflow.org/guide/create_op. Yesterday TF 2.13.0 was released, but after I upgraded to 2.13.0, I found that one of my customized OP gives incorrect results on GPUs and still has the correct outputs on CPUs.\r\n\r\nThen I tested many tf-nightly versions and found that tf-nightly 2.13.0.dev20230412 works but tf-nightly 2.13.0.dev20230413 fails. So the situation is shown in the following table:\r\n

Uses

Direct Use for Inference

First install the SetFit library:

pip install setfit

Then you can load this model and run inference.

from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("setfit_model_id")
# Run inference
preds = model("Data init API for TFLite Swift <details><summary>Click to expand!</summary> 
 
 ### Issue Type

Feature Request

### Source

source

### Tensorflow Version

2.8+

### Custom Code

No

### OS Platform and Distribution

_No response_

### Mobile device

_No response_

### Python version

_No response_

### Bazel version

_No response_

### GCC/Compiler version

_No response_

### CUDA/cuDNN version

_No response_

### GPU model and memory

_No response_

### Current Behaviour?

```shell
The current Swift API only has `init` functions from files on disk unlike the Java (Android) API which has a byte buffer initializer. It'd be convenient if the Swift API could initialize `Interpreters` from `Data`.

Standalone code to reproduce the issue

No code. This is a feature request

Relevant log output

No response")


<!--
### Downstream Use

*List how someone could finetune this model on their own dataset.*
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Set Metrics
| Training set | Min | Median   | Max  |
|:-------------|:----|:---------|:-----|
| Word count   | 5   | 353.7433 | 6124 |

| Label    | Training Sample Count |
|:---------|:----------------------|
| bug      | 200                   |
| feature  | 200                   |
| question | 200                   |

### Training Hyperparameters
- batch_size: (16, 2)
- num_epochs: (1, 1)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 20
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False

### Training Results
| Epoch  | Step | Training Loss | Validation Loss |
|:------:|:----:|:-------------:|:---------------:|
| 0.0007 | 1    | 0.1719        | -               |
| 0.0067 | 10   | 0.2869        | -               |
| 0.0133 | 20   | 0.2513        | -               |
| 0.02   | 30   | 0.1871        | -               |
| 0.0267 | 40   | 0.2065        | -               |
| 0.0333 | 50   | 0.2302        | -               |
| 0.04   | 60   | 0.1645        | -               |
| 0.0467 | 70   | 0.1887        | -               |
| 0.0533 | 80   | 0.1376        | -               |
| 0.06   | 90   | 0.1171        | -               |
| 0.0667 | 100  | 0.1303        | -               |
| 0.0733 | 110  | 0.121         | -               |
| 0.08   | 120  | 0.1126        | -               |
| 0.0867 | 130  | 0.1247        | -               |
| 0.0933 | 140  | 0.1764        | -               |
| 0.1    | 150  | 0.0401        | -               |
| 0.1067 | 160  | 0.1571        | -               |
| 0.1133 | 170  | 0.0186        | -               |
| 0.12   | 180  | 0.0501        | -               |
| 0.1267 | 190  | 0.1003        | -               |
| 0.1333 | 200  | 0.0152        | -               |
| 0.14   | 210  | 0.0784        | -               |
| 0.1467 | 220  | 0.1423        | -               |
| 0.1533 | 230  | 0.1313        | -               |
| 0.16   | 240  | 0.0799        | -               |
| 0.1667 | 250  | 0.0542        | -               |
| 0.1733 | 260  | 0.0426        | -               |
| 0.18   | 270  | 0.047         | -               |
| 0.1867 | 280  | 0.0062        | -               |
| 0.1933 | 290  | 0.0085        | -               |
| 0.2    | 300  | 0.0625        | -               |
| 0.2067 | 310  | 0.095         | -               |
| 0.2133 | 320  | 0.0262        | -               |
| 0.22   | 330  | 0.0029        | -               |
| 0.2267 | 340  | 0.0097        | -               |
| 0.2333 | 350  | 0.063         | -               |
| 0.24   | 360  | 0.0059        | -               |
| 0.2467 | 370  | 0.0016        | -               |
| 0.2533 | 380  | 0.0025        | -               |
| 0.26   | 390  | 0.0033        | -               |
| 0.2667 | 400  | 0.0006        | -               |
| 0.2733 | 410  | 0.0032        | -               |
| 0.28   | 420  | 0.0045        | -               |
| 0.2867 | 430  | 0.0013        | -               |
| 0.2933 | 440  | 0.0011        | -               |
| 0.3    | 450  | 0.001         | -               |
| 0.3067 | 460  | 0.0044        | -               |
| 0.3133 | 470  | 0.001         | -               |
| 0.32   | 480  | 0.0009        | -               |
| 0.3267 | 490  | 0.0004        | -               |
| 0.3333 | 500  | 0.0006        | -               |
| 0.34   | 510  | 0.001         | -               |
| 0.3467 | 520  | 0.0003        | -               |
| 0.3533 | 530  | 0.0008        | -               |
| 0.36   | 540  | 0.0003        | -               |
| 0.3667 | 550  | 0.0023        | -               |
| 0.3733 | 560  | 0.0336        | -               |
| 0.38   | 570  | 0.0004        | -               |
| 0.3867 | 580  | 0.0003        | -               |
| 0.3933 | 590  | 0.0006        | -               |
| 0.4    | 600  | 0.0008        | -               |
| 0.4067 | 610  | 0.0011        | -               |
| 0.4133 | 620  | 0.0002        | -               |
| 0.42   | 630  | 0.0004        | -               |
| 0.4267 | 640  | 0.0005        | -               |
| 0.4333 | 650  | 0.0601        | -               |
| 0.44   | 660  | 0.0003        | -               |
| 0.4467 | 670  | 0.0003        | -               |
| 0.4533 | 680  | 0.0006        | -               |
| 0.46   | 690  | 0.0005        | -               |
| 0.4667 | 700  | 0.0003        | -               |
| 0.4733 | 710  | 0.0006        | -               |
| 0.48   | 720  | 0.0001        | -               |
| 0.4867 | 730  | 0.0002        | -               |
| 0.4933 | 740  | 0.0002        | -               |
| 0.5    | 750  | 0.0002        | -               |
| 0.5067 | 760  | 0.0002        | -               |
| 0.5133 | 770  | 0.0016        | -               |
| 0.52   | 780  | 0.0001        | -               |
| 0.5267 | 790  | 0.0005        | -               |
| 0.5333 | 800  | 0.0004        | -               |
| 0.54   | 810  | 0.0039        | -               |
| 0.5467 | 820  | 0.0031        | -               |
| 0.5533 | 830  | 0.0008        | -               |
| 0.56   | 840  | 0.0003        | -               |
| 0.5667 | 850  | 0.0002        | -               |
| 0.5733 | 860  | 0.0002        | -               |
| 0.58   | 870  | 0.0002        | -               |
| 0.5867 | 880  | 0.0001        | -               |
| 0.5933 | 890  | 0.0004        | -               |
| 0.6    | 900  | 0.0002        | -               |
| 0.6067 | 910  | 0.0008        | -               |
| 0.6133 | 920  | 0.0005        | -               |
| 0.62   | 930  | 0.0005        | -               |
| 0.6267 | 940  | 0.0002        | -               |
| 0.6333 | 950  | 0.0001        | -               |
| 0.64   | 960  | 0.0002        | -               |
| 0.6467 | 970  | 0.0007        | -               |
| 0.6533 | 980  | 0.0002        | -               |
| 0.66   | 990  | 0.0002        | -               |
| 0.6667 | 1000 | 0.0002        | -               |
| 0.6733 | 1010 | 0.0002        | -               |
| 0.68   | 1020 | 0.0002        | -               |
| 0.6867 | 1030 | 0.0002        | -               |
| 0.6933 | 1040 | 0.0004        | -               |
| 0.7    | 1050 | 0.0076        | -               |
| 0.7067 | 1060 | 0.0002        | -               |
| 0.7133 | 1070 | 0.0002        | -               |
| 0.72   | 1080 | 0.0001        | -               |
| 0.7267 | 1090 | 0.0002        | -               |
| 0.7333 | 1100 | 0.0001        | -               |
| 0.74   | 1110 | 0.0365        | -               |
| 0.7467 | 1120 | 0.0002        | -               |
| 0.7533 | 1130 | 0.0002        | -               |
| 0.76   | 1140 | 0.0003        | -               |
| 0.7667 | 1150 | 0.0002        | -               |
| 0.7733 | 1160 | 0.0002        | -               |
| 0.78   | 1170 | 0.0004        | -               |
| 0.7867 | 1180 | 0.0001        | -               |
| 0.7933 | 1190 | 0.0001        | -               |
| 0.8    | 1200 | 0.0001        | -               |
| 0.8067 | 1210 | 0.0001        | -               |
| 0.8133 | 1220 | 0.0002        | -               |
| 0.82   | 1230 | 0.0002        | -               |
| 0.8267 | 1240 | 0.0001        | -               |
| 0.8333 | 1250 | 0.0001        | -               |
| 0.84   | 1260 | 0.0002        | -               |
| 0.8467 | 1270 | 0.0002        | -               |
| 0.8533 | 1280 | 0.0           | -               |
| 0.86   | 1290 | 0.0002        | -               |
| 0.8667 | 1300 | 0.032         | -               |
| 0.8733 | 1310 | 0.0001        | -               |
| 0.88   | 1320 | 0.0001        | -               |
| 0.8867 | 1330 | 0.0001        | -               |
| 0.8933 | 1340 | 0.0003        | -               |
| 0.9    | 1350 | 0.0001        | -               |
| 0.9067 | 1360 | 0.0001        | -               |
| 0.9133 | 1370 | 0.0001        | -               |
| 0.92   | 1380 | 0.0001        | -               |
| 0.9267 | 1390 | 0.0001        | -               |
| 0.9333 | 1400 | 0.0001        | -               |
| 0.94   | 1410 | 0.0001        | -               |
| 0.9467 | 1420 | 0.0001        | -               |
| 0.9533 | 1430 | 0.031         | -               |
| 0.96   | 1440 | 0.0001        | -               |
| 0.9667 | 1450 | 0.0003        | -               |
| 0.9733 | 1460 | 0.0001        | -               |
| 0.98   | 1470 | 0.0001        | -               |
| 0.9867 | 1480 | 0.0001        | -               |
| 0.9933 | 1490 | 0.0001        | -               |
| 1.0    | 1500 | 0.0001        | -               |

### Framework Versions
- Python: 3.10.12
- SetFit: 1.0.3
- Sentence Transformers: 3.0.1
- Transformers: 4.39.0
- PyTorch: 2.3.0+cu121
- Datasets: 2.20.0
- Tokenizers: 0.15.2

## Citation

### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}