--- base_model: sentence-transformers/all-mpnet-base-v2 library_name: setfit metrics: - accuracy pipeline_tag: text-classification tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer widget: - text: "How to get single UnidirectionalSequenceRnnOp in tflite model ### Issue Type\r\ \n\r\nSupport\r\n\r\n### Source\r\n\r\nsource\r\n\r\n### Tensorflow Version\r\n\ \r\n2.8\r\n\r\n### Custom Code\r\n\r\nYes\r\n\r\n### OS Platform and Distribution\r\ \n\r\nUbuntu 18.04\r\n\r\nAccording to https://github.com/tensorflow/tensorflow/blob/master/tensorflow/compiler/mlir/lite/python/tf_tfl_flatbuffer_helpers.cc\ \ there is `kUnidirectionalSequenceRnnOp` as a single operation in tflite, could\ \ you give a python code example - how can I get this? For example - this code\ \ for LSTM gives tflite with one UnidirectionalSequenceLSTM Op.\r\n```py\r\n#\ \ NOTE tested with TF 2.8.0\r\nimport tensorflow as tf\r\nimport numpy as np\r\ \n\r\nfrom tensorflow import keras\r\n\r\n\r\nmodel = keras.Sequential()\r\nshape\ \ = (4, 4)\r\n\r\nmodel.add(keras.layers.InputLayer(input_shape=shape, batch_size=1))\r\ \nmodel.add(keras.layers.LSTM(2, input_shape=shape))\r\n```\r\n![image](https://user-images.githubusercontent.com/4616940/197647526-59c63de2-df61-46a1-bd61-75baa2688376.png)\r\ \nHow can I do same for UnidirectionalSequenceRnn?" - text: "[Feature Request] GELU activation with the Hexagon delegate **System information**\r\ \n- OS Platform and Distribution (e.g., Linux Ubuntu 16.04): Ubuntu 20.04\r\n\ - TensorFlow installed from (source or binary): binary\r\n- TensorFlow version\ \ (or github SHA if from source): 2.9.1\r\n\r\nI think I'd be able to implement\ \ this myself, but wanted to see if there was any interest in including this upstream.\ \ Most of this I'm writing out to make sure my own understanding is correct.\r\ \n\r\n### The problem\r\n\r\nI'd like to add support for the GELU op to the Hexagon\ \ Delegate. The motivation for this is mostly for use with [DistilBERT](https://huggingface.co/distilbert-base-multilingual-cased),\ \ which uses this activation function in its feedforward network layers. (Also\ \ used by BERT, GPT-3, RoBERTa, etc.)\r\n\r\nAdding this as a supported op for\ \ the Hexagon delegate would avoid creating a graph partition/transferring between\ \ DSP<-->CPU each time the GELU activation function is used.\r\n\r\n### How I'd\ \ implement this\r\n\r\nGELU in TF Lite is implemented as a lookup table when\ \ there are integer inputs ([here](https://github.com/tensorflow/tensorflow/blob/master/tensorflow/lite/kernels/activations.cc#L120-L140)\ \ and [here](https://github.com/tensorflow/tensorflow/blob/master/tensorflow/lite/kernels/internal/reference/gelu.h#L37-L53)).\r\ \n\r\nThis same approach could be used for the Hexagon delegate, as it has int8/uint8\ \ data types and also supports lookup tables.\r\n\r\nI'd plan to do this by adding\ \ a new op builder in the delegate, populating a lookup table for each node as\ \ is currently done for the CPU version of the op, and then using the [Gather_8](https://source.codeaurora.org/quic/hexagon_nn/nnlib/tree/hexagon/ops/src/op_gather.c)\ \ nnlib library function to do the lookup.\r\n\r\n### Possible workaround\r\n\ \r\nA workaround I thought of:\r\n\r\nI'm going to try removing the [pattern matching](https://github.com/tensorflow/tensorflow/blob/master/tensorflow/compiler/mlir/lite/transforms/optimize_patterns.td#L1034-L1095)\ \ for approximate GELU in MLIR, and then using the approximate version of GELU\ \ (so that using tanh and not Erf). This will probably be slower, but should\ \ let me keep execution on the DSP.\r\n\r\nSince this will then be tanh, addition,\ \ multiplication ops instead of GELU they should all be runnable by the DSP." - text: "Data init API for TFLite Swift
Click to expand!\ \ \n \n ### Issue Type\n\nFeature Request\n\n### Source\n\nsource\n\n### Tensorflow\ \ Version\n\n2.8+\n\n### Custom Code\n\nNo\n\n### OS Platform and Distribution\n\ \n_No response_\n\n### Mobile device\n\n_No response_\n\n### Python version\n\n\ _No response_\n\n### Bazel version\n\n_No response_\n\n### GCC/Compiler version\n\ \n_No response_\n\n### CUDA/cuDNN version\n\n_No response_\n\n### GPU model and\ \ memory\n\n_No response_\n\n### Current Behaviour?\n\n```shell\nThe current Swift\ \ API only has `init` functions from files on disk unlike the Java (Android) API\ \ which has a byte buffer initializer. It'd be convenient if the Swift API could\ \ initialize `Interpreters` from `Data`.\n```\n\n\n### Standalone code to reproduce\ \ the issue\n\n```shell\nNo code. This is a feature request\n```\n\n\n### Relevant\ \ log output\n\n_No response_
" - text: "tf.distribute.MirroredStrategy for asynchronous training
Click\ \ to expand! \r\n \r\n ### Issue Type\r\n\r\nFeature Request\r\n\r\n\ ### Tensorflow Version\r\n\r\n2.8.1\r\n\r\n### Python version\r\n\r\n3.8.13\r\n\ \r\n### CUDA/cuDNN version\r\n\r\n11.8\r\n\r\n### Use Case\r\n\r\nI need to run\ \ multiple asynchronous copies of the same model on different slices of the dataset\ \ (e.g. with bootstrap sampling). There's no *good* way to do this in keras api\ \ that I'm aware of, although a couple of hacks exist. Would this use case be\ \ feasible with tf.distribute?\r\n\r\n### Feature Request\r\n\r\n`tf.distribute.MirroredStrategy`\ \ is a synchronous, data parallel strategy for distributed training across multiple\ \ devices on a single host worker.\r\n\r\nWould it be possible to modify this\ \ strategy to allow for asynchronous training of all model replicas, without computing\ \ the average gradient over all replicas to update weights? In this case each\ \ replica would need its own un-mirrored copy of model weights, and the update\ \ rule would depend only on the loss and gradients of each replica.\r\n\r\nThanks" - text: "Build TensorFlow Lite for iOS failed!!!! Please go to Stack Overflow for\ \ help and support:\r\n\r\nhttps://stackoverflow.com/questions/tagged/tensorflow\r\ \n\r\nIf you open a GitHub issue, here is our policy:\r\n\r\n1. `bazel build --config=ios_arm64\ \ -c opt --cxxopt=--std=c++17 \\\\\r\n //tensorflow/lite/ios:TensorFlowLiteC_framework\r\ \n❯ bazel build --incompatible_run_shell_command_string=false --verbose_failures\ \ --config=ios_arm64 -c opt //tensorflow/lite/ios:TensorFlowLiteCMetal_framework\r\ \nINFO: Options provided by the client:\r\n Inherited 'common' options: --isatty=1\ \ --terminal_columns=170\r\nINFO: Reading rc options for 'build' from /Users/thao/Desktop/tensorflow/.bazelrc:\r\ \n Inherited 'common' options: --experimental_repo_remote_exec\r\nINFO: Reading\ \ rc options for 'build' from /Users/thao/Desktop/tensorflow/.bazelrc:\r\n 'build'\ \ options: --define framework_shared_object=true --define tsl_protobuf_header_only=true\ \ --define=use_fast_cpp_protos=true --define=allow_oversize_protos=true --spawn_strategy=standalone\ \ -c opt --announce_rc --define=grpc_no_ares=true --noincompatible_remove_legacy_whole_archive\ \ --enable_platform_specific_config --define=with_xla_support=true --config=short_logs\ \ --config=v2 --define=no_aws_support=true --define=no_hdfs_support=true --experimental_cc_shared_library\ \ --experimental_link_static_libraries_once=false\r\nINFO: Reading rc options\ \ for 'build' from /Users/thao/Desktop/tensorflow/.tf_configure.bazelrc:\r\n \ \ 'build' options: --action_env PYTHON_BIN_PATH=/Users/thao/miniforge3/bin/python\ \ --action_env PYTHON_LIB_PATH=/Users/thao/miniforge3/lib/python3.10/site-packages\ \ --python_path=/Users/thao/miniforge3/bin/python\r\nINFO: Reading rc options\ \ for 'build' from /Users/thao/Desktop/tensorflow/.bazelrc:\r\n 'build' options:\ \ --deleted_packages=tensorflow/compiler/mlir/tfrt,tensorflow/compiler/mlir/tfrt/benchmarks,tensorflow/compiler/mlir/tfrt/jit/python_binding,tensorflow/compiler/mlir/tfrt/jit/transforms,tensorflow/compiler/mlir/tfrt/python_tests,tensorflow/compiler/mlir/tfrt/tests,tensorflow/compiler/mlir/tfrt/tests/ir,tensorflow/compiler/mlir/tfrt/tests/analysis,tensorflow/compiler/mlir/tfrt/tests/jit,tensorflow/compiler/mlir/tfrt/tests/lhlo_to_tfrt,tensorflow/compiler/mlir/tfrt/tests/lhlo_to_jitrt,tensorflow/compiler/mlir/tfrt/tests/tf_to_corert,tensorflow/compiler/mlir/tfrt/tests/tf_to_tfrt_data,tensorflow/compiler/mlir/tfrt/tests/saved_model,tensorflow/compiler/mlir/tfrt/transforms/lhlo_gpu_to_tfrt_gpu,tensorflow/core/runtime_fallback,tensorflow/core/runtime_fallback/conversion,tensorflow/core/runtime_fallback/kernel,tensorflow/core/runtime_fallback/opdefs,tensorflow/core/runtime_fallback/runtime,tensorflow/core/runtime_fallback/util,tensorflow/core/tfrt/common,tensorflow/core/tfrt/eager,tensorflow/core/tfrt/eager/backends/cpu,tensorflow/core/tfrt/eager/backends/gpu,tensorflow/core/tfrt/eager/core_runtime,tensorflow/core/tfrt/eager/cpp_tests/core_runtime,tensorflow/core/tfrt/gpu,tensorflow/core/tfrt/run_handler_thread_pool,tensorflow/core/tfrt/runtime,tensorflow/core/tfrt/saved_model,tensorflow/core/tfrt/graph_executor,tensorflow/core/tfrt/saved_model/tests,tensorflow/core/tfrt/tpu,tensorflow/core/tfrt/utils\r\ \nINFO: Found applicable config definition build:short_logs in file /Users/thao/Desktop/tensorflow/.bazelrc:\ \ --output_filter=DONT_MATCH_ANYTHING\r\nINFO: Found applicable config definition\ \ build:v2 in file /Users/thao/Desktop/tensorflow/.bazelrc: --define=tf_api_version=2\ \ --action_env=TF2_BEHAVIOR=1\r\nINFO: Found applicable config definition build:ios_arm64\ \ in file /Users/thao/Desktop/tensorflow/.bazelrc: --config=ios --cpu=ios_arm64\r\ \nINFO: Found applicable config definition build:ios in file /Users/thao/Desktop/tensorflow/.bazelrc:\ \ --apple_platform_type=ios --apple_bitcode=embedded --copt=-fembed-bitcode --copt=-Wno-c++11-narrowing\ \ --noenable_platform_specific_config --copt=-w --cxxopt=-std=c++17 --host_cxxopt=-std=c++17\ \ --define=with_xla_support=false\r\nINFO: Build option --cxxopt has changed,\ \ discarding analysis cache.\r\nERROR: /private/var/tmp/_bazel_thao/26d40dc75f2c247e7283b353a9ab184f/external/local_config_cc/BUILD:48:19:\ \ in cc_toolchain_suite rule @local_config_cc//:toolchain: cc_toolchain_suite\ \ '@local_config_cc//:toolchain' does not contain a toolchain for cpu 'ios_arm64'\r\ \nERROR: /private/var/tmp/_bazel_thao/26d40dc75f2c247e7283b353a9ab184f/external/local_config_cc/BUILD:48:19:\ \ Analysis of target '@local_config_cc//:toolchain' failed\r\nERROR: Analysis\ \ of target '//tensorflow/lite/ios:TensorFlowLiteCMetal_framework' failed; build\ \ aborted: \r\nINFO: Elapsed time: 45.455s\r\nINFO: 0 processes.\r\nFAILED: Build\ \ did NOT complete successfully (66 packages loaded, 1118 targets configured)`\r\ \n\r\n**Here's why we have that policy**: TensorFlow developers respond to issues.\ \ We want to focus on work that benefits the whole community, e.g., fixing bugs\ \ and adding features. Support only helps individuals. GitHub also notifies thousands\ \ of people when issues are filed. We want them to see you communicating an interesting\ \ problem, rather than being redirected to Stack Overflow.\r\n\r\n------------------------\r\ \n\r\n### System information\r\nMacOS-M1Max : 13.3\r\nTensorflow:2.9.2\r\nPython:\ \ 3.10.0\r\n\r\n\r\n\r\n### Describe the problem\r\nDescribe the problem clearly\ \ here. Be sure to convey here why it's a bug in TensorFlow or a feature request.\r\ \n\r\n### Source code / logs\r\nInclude any logs or source code that would be\ \ helpful to diagnose the problem. If including tracebacks, please include the\ \ full traceback. Large logs and files should be attached. Try to provide a reproducible\ \ test case that is the bare minimum necessary to generate the problem.\r\n" inference: true --- # SetFit with sentence-transformers/all-mpnet-base-v2 This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 384 tokens - **Number of Classes:** 3 classes ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:---------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | question | | | feature | | | bug | | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the 🤗 Hub model = SetFitModel.from_pretrained("setfit_model_id") # Run inference preds = model("Data init API for TFLite Swift
Click to expand! ### Issue Type Feature Request ### Source source ### Tensorflow Version 2.8+ ### Custom Code No ### OS Platform and Distribution _No response_ ### Mobile device _No response_ ### Python version _No response_ ### Bazel version _No response_ ### GCC/Compiler version _No response_ ### CUDA/cuDNN version _No response_ ### GPU model and memory _No response_ ### Current Behaviour? ```shell The current Swift API only has `init` functions from files on disk unlike the Java (Android) API which has a byte buffer initializer. It'd be convenient if the Swift API could initialize `Interpreters` from `Data`. ``` ### Standalone code to reproduce the issue ```shell No code. This is a feature request ``` ### Relevant log output _No response_
") ``` ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:---------|:-----| | Word count | 5 | 353.7433 | 6124 | | Label | Training Sample Count | |:---------|:----------------------| | bug | 200 | | feature | 200 | | question | 200 | ### Training Hyperparameters - batch_size: (16, 2) - num_epochs: (1, 1) - max_steps: -1 - sampling_strategy: oversampling - num_iterations: 20 - body_learning_rate: (2e-05, 1e-05) - head_learning_rate: 0.01 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: False ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:------:|:----:|:-------------:|:---------------:| | 0.0007 | 1 | 0.1719 | - | | 0.0067 | 10 | 0.2869 | - | | 0.0133 | 20 | 0.2513 | - | | 0.02 | 30 | 0.1871 | - | | 0.0267 | 40 | 0.2065 | - | | 0.0333 | 50 | 0.2302 | - | | 0.04 | 60 | 0.1645 | - | | 0.0467 | 70 | 0.1887 | - | | 0.0533 | 80 | 0.1376 | - | | 0.06 | 90 | 0.1171 | - | | 0.0667 | 100 | 0.1303 | - | | 0.0733 | 110 | 0.121 | - | | 0.08 | 120 | 0.1126 | - | | 0.0867 | 130 | 0.1247 | - | | 0.0933 | 140 | 0.1764 | - | | 0.1 | 150 | 0.0401 | - | | 0.1067 | 160 | 0.1571 | - | | 0.1133 | 170 | 0.0186 | - | | 0.12 | 180 | 0.0501 | - | | 0.1267 | 190 | 0.1003 | - | | 0.1333 | 200 | 0.0152 | - | | 0.14 | 210 | 0.0784 | - | | 0.1467 | 220 | 0.1423 | - | | 0.1533 | 230 | 0.1313 | - | | 0.16 | 240 | 0.0799 | - | | 0.1667 | 250 | 0.0542 | - | | 0.1733 | 260 | 0.0426 | - | | 0.18 | 270 | 0.047 | - | | 0.1867 | 280 | 0.0062 | - | | 0.1933 | 290 | 0.0085 | - | | 0.2 | 300 | 0.0625 | - | | 0.2067 | 310 | 0.095 | - | | 0.2133 | 320 | 0.0262 | - | | 0.22 | 330 | 0.0029 | - | | 0.2267 | 340 | 0.0097 | - | | 0.2333 | 350 | 0.063 | - | | 0.24 | 360 | 0.0059 | - | | 0.2467 | 370 | 0.0016 | - | | 0.2533 | 380 | 0.0025 | - | | 0.26 | 390 | 0.0033 | - | | 0.2667 | 400 | 0.0006 | - | | 0.2733 | 410 | 0.0032 | - | | 0.28 | 420 | 0.0045 | - | | 0.2867 | 430 | 0.0013 | - | | 0.2933 | 440 | 0.0011 | - | | 0.3 | 450 | 0.001 | - | | 0.3067 | 460 | 0.0044 | - | | 0.3133 | 470 | 0.001 | - | | 0.32 | 480 | 0.0009 | - | | 0.3267 | 490 | 0.0004 | - | | 0.3333 | 500 | 0.0006 | - | | 0.34 | 510 | 0.001 | - | | 0.3467 | 520 | 0.0003 | - | | 0.3533 | 530 | 0.0008 | - | | 0.36 | 540 | 0.0003 | - | | 0.3667 | 550 | 0.0023 | - | | 0.3733 | 560 | 0.0336 | - | | 0.38 | 570 | 0.0004 | - | | 0.3867 | 580 | 0.0003 | - | | 0.3933 | 590 | 0.0006 | - | | 0.4 | 600 | 0.0008 | - | | 0.4067 | 610 | 0.0011 | - | | 0.4133 | 620 | 0.0002 | - | | 0.42 | 630 | 0.0004 | - | | 0.4267 | 640 | 0.0005 | - | | 0.4333 | 650 | 0.0601 | - | | 0.44 | 660 | 0.0003 | - | | 0.4467 | 670 | 0.0003 | - | | 0.4533 | 680 | 0.0006 | - | | 0.46 | 690 | 0.0005 | - | | 0.4667 | 700 | 0.0003 | - | | 0.4733 | 710 | 0.0006 | - | | 0.48 | 720 | 0.0001 | - | | 0.4867 | 730 | 0.0002 | - | | 0.4933 | 740 | 0.0002 | - | | 0.5 | 750 | 0.0002 | - | | 0.5067 | 760 | 0.0002 | - | | 0.5133 | 770 | 0.0016 | - | | 0.52 | 780 | 0.0001 | - | | 0.5267 | 790 | 0.0005 | - | | 0.5333 | 800 | 0.0004 | - | | 0.54 | 810 | 0.0039 | - | | 0.5467 | 820 | 0.0031 | - | | 0.5533 | 830 | 0.0008 | - | | 0.56 | 840 | 0.0003 | - | | 0.5667 | 850 | 0.0002 | - | | 0.5733 | 860 | 0.0002 | - | | 0.58 | 870 | 0.0002 | - | | 0.5867 | 880 | 0.0001 | - | | 0.5933 | 890 | 0.0004 | - | | 0.6 | 900 | 0.0002 | - | | 0.6067 | 910 | 0.0008 | - | | 0.6133 | 920 | 0.0005 | - | | 0.62 | 930 | 0.0005 | - | | 0.6267 | 940 | 0.0002 | - | | 0.6333 | 950 | 0.0001 | - | | 0.64 | 960 | 0.0002 | - | | 0.6467 | 970 | 0.0007 | - | | 0.6533 | 980 | 0.0002 | - | | 0.66 | 990 | 0.0002 | - | | 0.6667 | 1000 | 0.0002 | - | | 0.6733 | 1010 | 0.0002 | - | | 0.68 | 1020 | 0.0002 | - | | 0.6867 | 1030 | 0.0002 | - | | 0.6933 | 1040 | 0.0004 | - | | 0.7 | 1050 | 0.0076 | - | | 0.7067 | 1060 | 0.0002 | - | | 0.7133 | 1070 | 0.0002 | - | | 0.72 | 1080 | 0.0001 | - | | 0.7267 | 1090 | 0.0002 | - | | 0.7333 | 1100 | 0.0001 | - | | 0.74 | 1110 | 0.0365 | - | | 0.7467 | 1120 | 0.0002 | - | | 0.7533 | 1130 | 0.0002 | - | | 0.76 | 1140 | 0.0003 | - | | 0.7667 | 1150 | 0.0002 | - | | 0.7733 | 1160 | 0.0002 | - | | 0.78 | 1170 | 0.0004 | - | | 0.7867 | 1180 | 0.0001 | - | | 0.7933 | 1190 | 0.0001 | - | | 0.8 | 1200 | 0.0001 | - | | 0.8067 | 1210 | 0.0001 | - | | 0.8133 | 1220 | 0.0002 | - | | 0.82 | 1230 | 0.0002 | - | | 0.8267 | 1240 | 0.0001 | - | | 0.8333 | 1250 | 0.0001 | - | | 0.84 | 1260 | 0.0002 | - | | 0.8467 | 1270 | 0.0002 | - | | 0.8533 | 1280 | 0.0 | - | | 0.86 | 1290 | 0.0002 | - | | 0.8667 | 1300 | 0.032 | - | | 0.8733 | 1310 | 0.0001 | - | | 0.88 | 1320 | 0.0001 | - | | 0.8867 | 1330 | 0.0001 | - | | 0.8933 | 1340 | 0.0003 | - | | 0.9 | 1350 | 0.0001 | - | | 0.9067 | 1360 | 0.0001 | - | | 0.9133 | 1370 | 0.0001 | - | | 0.92 | 1380 | 0.0001 | - | | 0.9267 | 1390 | 0.0001 | - | | 0.9333 | 1400 | 0.0001 | - | | 0.94 | 1410 | 0.0001 | - | | 0.9467 | 1420 | 0.0001 | - | | 0.9533 | 1430 | 0.031 | - | | 0.96 | 1440 | 0.0001 | - | | 0.9667 | 1450 | 0.0003 | - | | 0.9733 | 1460 | 0.0001 | - | | 0.98 | 1470 | 0.0001 | - | | 0.9867 | 1480 | 0.0001 | - | | 0.9933 | 1490 | 0.0001 | - | | 1.0 | 1500 | 0.0001 | - | ### Framework Versions - Python: 3.10.12 - SetFit: 1.0.3 - Sentence Transformers: 3.0.1 - Transformers: 4.39.0 - PyTorch: 2.3.0+cu121 - Datasets: 2.20.0 - Tokenizers: 0.15.2 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```