Model save
Browse files- README.md +74 -0
- adapter_model.safetensors +1 -1
- results.json +4 -0
README.md
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: other
|
3 |
+
library_name: peft
|
4 |
+
tags:
|
5 |
+
- trl
|
6 |
+
- sft
|
7 |
+
- generated_from_trainer
|
8 |
+
base_model: meta-llama/Meta-Llama-3-8B-Instruct
|
9 |
+
datasets:
|
10 |
+
- generator
|
11 |
+
metrics:
|
12 |
+
- bleu
|
13 |
+
- rouge
|
14 |
+
model-index:
|
15 |
+
- name: Meta-Llama-3-8B-Instruct-advisegpt-v0.2
|
16 |
+
results: []
|
17 |
+
---
|
18 |
+
|
19 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
20 |
+
should probably proofread and complete it, then remove this comment. -->
|
21 |
+
|
22 |
+
# Meta-Llama-3-8B-Instruct-advisegpt-v0.2
|
23 |
+
|
24 |
+
This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) on the generator dataset.
|
25 |
+
It achieves the following results on the evaluation set:
|
26 |
+
- Loss: 0.6891
|
27 |
+
- Bleu: {'bleu': 0.7794801643070653, 'precisions': [0.8826931860836374, 0.7921738670614986, 0.7521498106470706, 0.7302911239298923], 'brevity_penalty': 0.9901418189906349, 'length_ratio': 0.9901900930687305, 'translation_length': 663363, 'reference_length': 669935}
|
28 |
+
- Rouge: {'rouge1': 0.8797610930416109, 'rouge2': 0.7838158722398209, 'rougeL': 0.8517529678496154, 'rougeLsum': 0.8731754875691802}
|
29 |
+
- Exact Match: {'exact_match': 0.0}
|
30 |
+
|
31 |
+
## Model description
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Intended uses & limitations
|
36 |
+
|
37 |
+
More information needed
|
38 |
+
|
39 |
+
## Training and evaluation data
|
40 |
+
|
41 |
+
More information needed
|
42 |
+
|
43 |
+
## Training procedure
|
44 |
+
|
45 |
+
### Training hyperparameters
|
46 |
+
|
47 |
+
The following hyperparameters were used during training:
|
48 |
+
- learning_rate: 2e-05
|
49 |
+
- train_batch_size: 5
|
50 |
+
- eval_batch_size: 4
|
51 |
+
- seed: 42
|
52 |
+
- gradient_accumulation_steps: 12
|
53 |
+
- total_train_batch_size: 60
|
54 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
55 |
+
- lr_scheduler_type: cosine
|
56 |
+
- num_epochs: 3
|
57 |
+
- mixed_precision_training: Native AMP
|
58 |
+
|
59 |
+
### Training results
|
60 |
+
|
61 |
+
| Training Loss | Epoch | Step | Validation Loss | Bleu | Rouge | Exact Match |
|
62 |
+
|:-------------:|:------:|:----:|:---------------:|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------------------------:|:--------------------:|
|
63 |
+
| 0.1221 | 0.9967 | 175 | 0.6891 | {'bleu': 0.7794801643070653, 'precisions': [0.8826931860836374, 0.7921738670614986, 0.7521498106470706, 0.7302911239298923], 'brevity_penalty': 0.9901418189906349, 'length_ratio': 0.9901900930687305, 'translation_length': 663363, 'reference_length': 669935} | {'rouge1': 0.8797610930416109, 'rouge2': 0.7838158722398209, 'rougeL': 0.8517529678496154, 'rougeLsum': 0.8731754875691802} | {'exact_match': 0.0} |
|
64 |
+
| 0.1091 | 1.9991 | 351 | 0.6977 | {'bleu': 0.7805322713844085, 'precisions': [0.8833412231532545, 0.7931277801953389, 0.7535080094374768, 0.7317717661200727], 'brevity_penalty': 0.9900498636013274, 'length_ratio': 0.990099039459052, 'translation_length': 663302, 'reference_length': 669935} | {'rouge1': 0.88033924999596, 'rouge2': 0.7849601251129642, 'rougeL': 0.8519921287058778, 'rougeLsum': 0.8736913571890462} | {'exact_match': 0.0} |
|
65 |
+
| 0.1067 | 2.9900 | 525 | 0.7051 | {'bleu': 0.7808878497559923, 'precisions': [0.8838378429742967, 0.7938818670645449, 0.7542948740286441, 0.7326395901316979], 'brevity_penalty': 0.9895748787367024, 'length_ratio': 0.9896288445894005, 'translation_length': 662987, 'reference_length': 669935} | {'rouge1': 0.8806020535666979, 'rouge2': 0.7857024053578856, 'rougeL': 0.8520805662216797, 'rougeLsum': 0.8739154999822791} | {'exact_match': 0.0} |
|
66 |
+
|
67 |
+
|
68 |
+
### Framework versions
|
69 |
+
|
70 |
+
- PEFT 0.10.0
|
71 |
+
- Transformers 4.40.1
|
72 |
+
- Pytorch 2.3.0+cu121
|
73 |
+
- Datasets 2.19.0
|
74 |
+
- Tokenizers 0.19.1
|
adapter_model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 2806378968
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6853d39830a8976bdc810dbf1e257d83c669a1f3427040b8c083ecc922a1884b
|
3 |
size 2806378968
|
results.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Pre-training results:
|
2 |
+
{"eval_loss": 2.3326611518859863, "eval_bleu": {"bleu": 0.5454691474666797, "precisions": [0.7673002426556667, 0.55498965343115, 0.47555838550638013, 0.4399945816996907], "brevity_penalty": 0.9983776325955439, "length_ratio": 0.9983789472112966, "translation_length": 668849, "reference_length": 669935}, "eval_rouge": {"rouge1": 0.7711607888144418, "rouge2": 0.5464636265187319, "rougeL": 0.6786521367857117, "rougeLsum": 0.7626278756724272}, "eval_exact_match": {"exact_match": 0.0}, "eval_runtime": 455.9955, "eval_samples_per_second": 3.241, "eval_steps_per_second": 0.811}
|
3 |
+
Post-training results:
|
4 |
+
{"eval_loss": 0.689052164554596, "eval_bleu": {"bleu": 0.7794801643070653, "precisions": [0.8826931860836374, 0.7921738670614986, 0.7521498106470706, 0.7302911239298923], "brevity_penalty": 0.9901418189906349, "length_ratio": 0.9901900930687305, "translation_length": 663363, "reference_length": 669935}, "eval_rouge": {"rouge1": 0.8797610930416109, "rouge2": 0.7838158722398209, "rougeL": 0.8517529678496154, "rougeLsum": 0.8731754875691802}, "eval_exact_match": {"exact_match": 0.0}, "eval_runtime": 454.9212, "eval_samples_per_second": 3.249, "eval_steps_per_second": 0.813, "epoch": 2.990033222591362}
|