nirajandhakal
commited on
Commit
•
3f702ae
1
Parent(s):
fe24083
Create data_preprocessing.py
Browse files- data_preprocessing.py +121 -0
data_preprocessing.py
ADDED
@@ -0,0 +1,121 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import numpy as np
|
3 |
+
|
4 |
+
# Function Definitions
|
5 |
+
|
6 |
+
# Load libraries
|
7 |
+
def load_data(file):
|
8 |
+
return pd.read_csv(file, index_col=False)
|
9 |
+
|
10 |
+
# Handle duplicate rows
|
11 |
+
def remove_duplicate_rows(df):
|
12 |
+
df = df.drop_duplicates()
|
13 |
+
print("Number of removed duplicated rows:", len(df)-len(df.drop_duplicates()))
|
14 |
+
return df
|
15 |
+
|
16 |
+
# One hot encode categorical columns
|
17 |
+
def onehot_encoder(df, cols):
|
18 |
+
encoded_cols = []
|
19 |
+
for col in cols:
|
20 |
+
encoder = pd.get_dummies(df[col])
|
21 |
+
encoded_cols += list(encoder.columns)
|
22 |
+
df = df.join(encoder)
|
23 |
+
del df[col]
|
24 |
+
|
25 |
+
return df, encoded_cols
|
26 |
+
|
27 |
+
# Deal with NaN values in specified columns
|
28 |
+
def fillna_values(df, cols, strategy='mean'):
|
29 |
+
for col in cols:
|
30 |
+
if strategy == 'median':
|
31 |
+
df[col].fillna(df[col].median(), inplace=True)
|
32 |
+
elif strategy == 'mean':
|
33 |
+
df[col].fillna(df[col].mean(), inplace=True)
|
34 |
+
else:
|
35 |
+
raise ValueError('Invalid filling strategy')
|
36 |
+
|
37 |
+
return df
|
38 |
+
|
39 |
+
# Preprocess books dataset
|
40 |
+
def preprocess_books(books):
|
41 |
+
# Drop duplicates
|
42 |
+
books = remove_duplicate_rows(books)
|
43 |
+
|
44 |
+
# Get categorical columns
|
45 |
+
cat_cols = ['language_code']
|
46 |
+
|
47 |
+
# One-hot encode categoricals
|
48 |
+
books, _ = onehot_encoder(books, cat_cols)
|
49 |
+
|
50 |
+
# Fill NAs
|
51 |
+
fillna_cols = ['average_rating', 'ratings_count', 'work_ratings_count', 'work_text_reviews_count']
|
52 |
+
books = fillna_values(books, fillna_cols, strategy='mean')
|
53 |
+
|
54 |
+
return books
|
55 |
+
|
56 |
+
# Preprocess tags dataset
|
57 |
+
def preprocess_tags(tags):
|
58 |
+
return tags
|
59 |
+
|
60 |
+
def preprocess_book_tags(book_tags):
|
61 |
+
# Map tag_id to tag_name instead of dropping the column
|
62 |
+
tag_mapping = dict(zip(book_tags["tag_id"], book_tags["tag_name"]))
|
63 |
+
book_tags["tag_name"] = book_tags["tag_id"].apply(lambda x: tag_mapping.get(x, None))
|
64 |
+
|
65 |
+
# Groupby aggregate
|
66 |
+
agg_funcs = {'count': 'sum'} # Sum or other functions according to requirement
|
67 |
+
book_tags = book_tags.groupby(['goodreads_book_id'], as_index=False).agg(agg_funcs)
|
68 |
+
|
69 |
+
return book_tags
|
70 |
+
|
71 |
+
# Preprocess goodbooks-10k dataset
|
72 |
+
def preprocess_goodbooks(goodbooks):
|
73 |
+
# Scaling/softening extreme ratings
|
74 |
+
scaling_threshold = 4.5
|
75 |
+
goodbooks['scaled_rating'] = np.where(goodbooks['rating'] > scaling_threshold, scaling_threshold - 0.5 + ((scaling_threshold - 0.5) / (5 - scaling_threshold)) * (goodbooks['rating'] - scaling_threshold), goodbooks['rating'])
|
76 |
+
|
77 |
+
return goodbooks
|
78 |
+
|
79 |
+
# Merge and save dataset
|
80 |
+
# Merge and save dataset
|
81 |
+
def merge_and_save_dataset():
|
82 |
+
# Read files
|
83 |
+
files = {
|
84 |
+
'books': '../data/books.csv',
|
85 |
+
'book_tags': '../data/book_tags.csv',
|
86 |
+
'goodbooks': '../data/goodbooks-10k.csv',
|
87 |
+
'ratings': '../data/ratings.csv',
|
88 |
+
'tags': '../data/tags.csv',
|
89 |
+
'to_read': '../data/to_read.csv'
|
90 |
+
}
|
91 |
+
|
92 |
+
merged_dataset = pd.merge(left=pd.merge(preprocessed_books, preprocessed_book_tags, left_index=True, right_on="goodreads_book_id"), right=preprocessed_goodbooks, left_index=True)
|
93 |
+
|
94 |
+
# Additional cleanup and preprocessing
|
95 |
+
merged_dataset = merged_dataset.loc[:, ~merged_dataset.columns.duplicated()]
|
96 |
+
|
97 |
+
# Save the final dataset
|
98 |
+
merged_dataset.to_csv("../data/final_dataset.csv", index=False)
|
99 |
+
|
100 |
+
# Merge and save dataset
|
101 |
+
def merge_and_save_dataset():
|
102 |
+
# Read files
|
103 |
+
files = {
|
104 |
+
'books': '../data/books.csv',
|
105 |
+
'book_tags': '../data/book_tags.csv',
|
106 |
+
'goodbooks': '../data/goodbooks-10k.csv',
|
107 |
+
'ratings': '../data/ratings.csv',
|
108 |
+
'tags': '../data/tags.csv',
|
109 |
+
'to_read': '../data/to_read.csv'
|
110 |
+
}
|
111 |
+
|
112 |
+
merged_dataset = pd.merge(left=pd.merge(preprocessed_books, preprocessed_book_tags, left_index=True, right_on="goodreads_book_id"), right=preprocessed_goodbooks, left_index=True, right_index=True)
|
113 |
+
|
114 |
+
# Additional cleanup and preprocessing
|
115 |
+
merged_dataset = merged_dataset.loc[:, ~merged_dataset.columns.duplicated()]
|
116 |
+
|
117 |
+
# Save the final dataset
|
118 |
+
merged_dataset.to_csv("../data/final_dataset.csv", index=False)
|
119 |
+
|
120 |
+
|
121 |
+
merge_and_save_dataset()
|