--- base_model: llm-jp/llm-jp-3-13b tags: - text-generation-inference - transformers - unsloth - llama - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** nishimura999 - **License:** apache-2.0 - **Finetuned from model :** llm-jp/llm-jp-3-13b This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [](https://github.com/unslothai/unsloth) # usage ## -import ```python from transformers import ( AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, ) import torch from tqdm import tqdm import json ``` ## -setting ```python # Hugging Faceで取得したToken HF_TOKEN = "{Your hugging face token}" # モデルのID model_name = "nishimura999/llm-jp-3-13b-finetune-v101" ``` ## -confing ```python # QLoRA config bnb_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.bfloat16, bnb_4bit_use_double_quant=False, ) ``` ## -load ```python # Load model model = AutoModelForCausalLM.from_pretrained( model_name, quantization_config=bnb_config, device_map="auto", token = HF_TOKEN ) # Load tokenizer tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True, token = HF_TOKEN) ``` ## -dataset ```python # データセットの読み込み。 datasets = [] with open("./elyza-tasks-100-TV_0.jsonl", "r") as f: item = "" for line in f: line = line.strip() item += line if item.endswith("}"): datasets.append(json.loads(item)) item = "" ``` ## -generate ```python results = [] for data in tqdm(datasets): input = data["input"] prompt = f"""### 指示 {input} ### 回答: """ tokenized_input = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt").to(model.device) with torch.no_grad(): outputs = model.generate( tokenized_input, max_new_tokens=100, do_sample=False, repetition_penalty=1.2 )[0] output = tokenizer.decode(outputs[tokenized_input.size(1):], skip_special_tokens=True) results.append({"task_id": data["task_id"], "input": input, "output": output}) ``` ## -output ```python import re model_name = re.sub(".*/", "", model_name) with open(f"./{model_name}-outputs.jsonl", 'w', encoding='utf-8') as f: for result in results: json.dump(result, f, ensure_ascii=False) # ensure_ascii=False for handling non-ASCII characters f.write('\n') ``` # ref ### 本モデルは下記のデータを使ってファインチューニングしております。ここでデータ提供者に感謝申し上げます。 (https://liat-aip.sakura.ne.jp/wp/llmのための日本語インストラクションデータ作成/llmのための日本語インストラクションデータ-公開/) 関根聡, 安藤まや, 後藤美知子, 鈴木久美, 河原大輔, 井之上直也, 乾健太郎. ichikara-instruction: LLMのための日本語インストラクションデータの構築. 言語処理学会第30回年次大会(2024)