File size: 12,144 Bytes
deb6397 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 |
import re, math, torch
from collections import OrderedDict
from typing import Optional, Tuple
from torch import nn
from torch.nn.init import trunc_normal_, normal_
import torch.utils.checkpoint
from transformers import PreTrainedModel, PretrainedConfig, AutoConfig, AutoModel
class ClassInstantier(OrderedDict):
def __getitem__(self, key):
content = super().__getitem__(key)
cls, kwargs = content if isinstance(content, tuple) else (content, {})
return cls(**kwargs)
ACT2CLS = {"silu": nn.SiLU}
ACT2FN = ClassInstantier(ACT2CLS)
class WeightedNorm(nn.Module):
def __init__(self, hidden_size):
"""
WeightedNorm
"""
super().__init__()
self.hidden_size = hidden_size
self.norm = nn.LayerNorm(self.hidden_size)
self.wheight = nn.Parameter(torch.ones(self.hidden_size))
normal_(self.wheight, mean=1, std=.02)
def forward(self, x):
x = self.norm(x)
return x * self.wheight
class PerceiverMLP(nn.Module):
def __init__(
self,
hidden_size: int,
intermediate_size: int,
output_size: int,
hidden_act: str,
):
super().__init__()
self.gate_proj = nn.Linear(hidden_size, intermediate_size, bias=False)
self.up_proj = nn.Linear(hidden_size, intermediate_size, bias=False)
self.down_proj = nn.Linear(intermediate_size, output_size, bias=False)
self.act_fn = ACT2FN[hidden_act]
def forward(self, x):
return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
# Copied from transformers.models.llama.modeling_llama.repeat_kv
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
"""
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
"""
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
if n_rep == 1:
return hidden_states
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
class PerceiverAttention(nn.Module):
def __init__(self, connector_config, layer_idx: Optional[int] = None) -> None:
"""Perceiver Cross-Attention Module --> let long-form inputs be `context`, resampled embeddings be `latents`"""
super().__init__()
self.layer_idx = None
self.hidden_size = connector_config.text_hidden_size
self.num_heads = connector_config.resampler_n_heads
self.head_dim = connector_config.resampler_head_dim
self.num_key_value_heads = connector_config.num_key_value_heads
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
self.is_causal = False
def forward(
self,
latents: torch.Tensor,
context: torch.Tensor,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: bool = False,
use_cache: bool = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
"""
Runs Perceiver Self-Attention, with special (context, latents) appended along the `seq` dimension!
Args:
latents (`torch.Tensor`): Tensor of shape [bsz, n_latents, embed_dim] representing fixed length latents to compress to.
context (`torch.Tensor`): Tensor of shape [bsz, seq, embed_dim] representing long-form context to resample.
output_attentions (`bool`, *optional*, defaults to `False`): Whether to return attention weights.
use_cache (`bool`, *optional*, defaults to `False`): Whether to use past_key_value for caching.
"""
bsz, q_len, _ = latents.size()
kv_seq_len = q_len + context.size()[1]
hidden_states = torch.concat([context, latents], dim=-2)
query_states = self.q_proj(latents)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = key_states.view(bsz, kv_seq_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, kv_seq_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
past_key_value = getattr(self, "past_key_value", past_key_value)
if past_key_value is not None:
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx)
# repeat k/v heads if n_kv_heads < n_heads
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
raise ValueError(
f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
f" {attn_weights.size()}"
)
# upcast attention to fp32
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
attn_output = torch.matmul(attn_weights, value_states)
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.reshape(bsz, q_len, self.num_heads * self.head_dim)
attn_output = self.o_proj(attn_output)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights, past_key_value
PERCEIVER_ATTENTION_CLASSES = {
"eager": PerceiverAttention,
}
class PerceiverLayer(nn.Module):
def __init__(self, connector_config, layer_idx: int):
super().__init__()
self.hidden_size = connector_config.text_hidden_size
self.n_latents = connector_config.num_output_tokens
self.depth = connector_config.resampler_depth
self.ff_multi = connector_config.ff_multi
self.input_latents_norm = WeightedNorm(self.hidden_size)
self.input_context_norm = WeightedNorm(self.hidden_size)
self.self_attn = PERCEIVER_ATTENTION_CLASSES[connector_config._attn_implementation](connector_config,
layer_idx=layer_idx)
self.post_attention_layernorm = WeightedNorm(self.hidden_size)
self.mlp = PerceiverMLP(
hidden_size=connector_config.text_hidden_size,
intermediate_size=connector_config.text_hidden_size * self.ff_multi,
output_size=connector_config.text_hidden_size,
hidden_act=connector_config.hidden_act,
)
def forward(
self,
latents: torch.Tensor,
context: torch.Tensor,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = False,
**kwargs,
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
"""
Args:
latents (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
context (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
(see `past_key_values`).
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
"""
residual = latents
latents = self.input_latents_norm(latents)
context = self.input_context_norm(context)
latents, self_attn_weights, present_key_value = self.self_attn(
latents=latents,
context=context,
)
latents = residual + latents
residual = latents
latents = self.post_attention_layernorm(latents)
latents = self.mlp(latents)
latents = residual + latents
outputs = (latents,)
if output_attentions:
outputs += (self_attn_weights,)
if use_cache:
outputs += (present_key_value,)
return outputs
class PerceiverResampler(nn.Module):
"""Perceiver Resampler that compresses input embeddings into a fixed number of latents."""
def __init__(self, connector_config) -> None:
super().__init__()
self.hidden_size = connector_config.text_hidden_size
self.hidden_act = connector_config.hidden_act
self.n_latents = connector_config.num_output_tokens
self.depth = connector_config.resampler_depth
# Create Latents for Perceiver
self.latents = nn.Parameter(torch.zeros(self.n_latents, self.hidden_size))
# Create Transformer Blocks
self.layers = nn.ModuleList([PerceiverLayer(connector_config, idx) for idx in range(self.depth)])
self.norm = WeightedNorm(self.hidden_size)
self._use_flash_attention_2 = connector_config._attn_implementation == "flash_attention_2"
def forward(
self,
context: torch.Tensor,
attention_mask: torch.Tensor = None,
) -> torch.Tensor:
# seq embed -> bsz seq embed
latents = self.latents.unsqueeze(0).expand((context.shape[0], *self.latents.size()))
compressed_context = latents
for i, perceiver_layer in enumerate(self.layers):
layer_outputs = perceiver_layer(
compressed_context,
context,
past_key_value=None,
output_attentions=False,
use_cache=False,
)
compressed_context = layer_outputs[0]
compressed_context = self.norm(compressed_context)
return compressed_context
def build_mm_projector(
input_dim,
output_dim,
projector_type,
hidden_act='silu',
delay_load=False,
token_input_shape=0,
**kwargs
) -> nn.Sequential:
modules = [nn.Linear(input_dim, output_dim)]
mlp_gelu_match = re.match(r'.*mlp(\d+)x_gelu$', projector_type)
if mlp_gelu_match is not None:
mlp_depth = int(mlp_gelu_match.group(1))
for _ in range(mlp_depth - 1):
modules.append(nn.GELU())
modules.append(nn.Linear(output_dim, output_dim))
return nn.Sequential(*modules)
class MMConnector(PreTrainedModel):
config_class = PretrainedConfig
def __init__(self, config: PretrainedConfig) -> None:
super().__init__(config)
self.proj = build_mm_projector(config.vision_hidden_size, config.text_hidden_size,
config.projector_type, token_input_shape=config.token_input_shape)
self.resampler = PerceiverResampler(config)
def forward(self, x):
x = self.proj(x)
x = self.resampler(x)
return x
|