File size: 21,458 Bytes
deb6397 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 |
import torch, os, PIL, numbers
from PIL import Image
import cv2
from transformers.modeling_utils import PreTrainedModel
from transformers.models.siglip.modeling_siglip import SiglipVisionModel
from transformers import AutoConfig, AutoModel, SiglipImageProcessor, SiglipVisionConfig, PretrainedConfig
from typing import Union
import torch.nn.functional as F
import numpy as np
def crop_clip(clip, min_h, min_w, h, w):
if isinstance(clip[0], np.ndarray):
cropped = [img[min_h:min_h + h, min_w:min_w + w, :] for img in clip]
elif isinstance(clip[0], PIL.Image.Image):
cropped = [
img.crop((min_w, min_h, min_w + w, min_h + h)) for img in clip
]
else:
raise TypeError('Expected numpy.ndarray or PIL.Image' +
'but got list of {0}'.format(type(clip[0])))
return cropped
class Normalize(object):
"""Normalize a clip with mean and standard deviation.
Given mean: ``(M1,...,Mn)`` and std: ``(S1,..,Sn)`` for ``n`` channels, this transform
will normalize each channel of the input ``torch.*Tensor`` i.e.
``input[channel] = (input[channel] - mean[channel]) / std[channel]``
.. note::
This transform acts out of place, i.e., it does not mutates the input tensor.
Args:
mean (sequence): Sequence of means for each channel.
std (sequence): Sequence of standard deviations for each channel.
"""
def __init__(self, mean, std):
self.mean = mean
self.std = std
def __call__(self, clip):
"""
Args:
clip (Tensor): Tensor clip of size (T, C, H, W) to be normalized.
Returns:
Tensor: Normalized Tensor clip.
"""
return normalize(clip, self.mean, self.std)
def __repr__(self):
return self.__class__.__name__ + '(mean={0}, std={1})'.format(self.mean, self.std)
class CenterCrop(object):
"""Extract center crop at the same location for a list of images
Args:
size (sequence or int): Desired output size for the
crop in format (h, w)
"""
def __init__(self, size):
if isinstance(size, numbers.Number):
size = (size, size)
self.size = size
def __call__(self, clip):
"""
Args:
img (PIL.Image or numpy.ndarray): List of images to be cropped
in format (h, w, c) in numpy.ndarray
Returns:
PIL.Image or numpy.ndarray: Cropped list of images
"""
h, w = self.size
if isinstance(clip[0], np.ndarray):
im_h, im_w, im_c = clip[0].shape
elif isinstance(clip[0], PIL.Image.Image):
im_w, im_h = clip[0].size
else:
raise TypeError('Expected numpy.ndarray or PIL.Image' +
'but got list of {0}'.format(type(clip[0])))
if w > im_w or h > im_h:
error_msg = (
'Initial image size should be larger then '
'cropped size but got cropped sizes : ({w}, {h}) while '
'initial image is ({im_w}, {im_h})'.format(
im_w=im_w, im_h=im_h, w=w, h=h))
raise ValueError(error_msg)
x1 = int(round((im_w - w) / 2.))
y1 = int(round((im_h - h) / 2.))
cropped = crop_clip(clip, y1, x1, h, w)
return cropped
def resize_clip(clip, size, interpolation='bilinear'):
if isinstance(clip[0], np.ndarray):
if isinstance(size, numbers.Number):
im_h, im_w, im_c = clip[0].shape
# Min spatial dim already matches minimal size
if (im_w <= im_h and im_w == size) or (im_h <= im_w
and im_h == size):
return clip
new_h, new_w = get_resize_sizes(im_h, im_w, size)
size = (new_w, new_h)
else:
size = size[0], size[1]
if interpolation == 'bilinear':
np_inter = cv2.INTER_LINEAR
else:
np_inter = cv2.INTER_NEAREST
scaled = [
cv2.resize(img, size, interpolation=np_inter) for img in clip
]
elif isinstance(clip[0], PIL.Image.Image):
if isinstance(size, numbers.Number):
im_w, im_h = clip[0].size
# Min spatial dim already matches minimal size
if (im_w <= im_h and im_w == size) or (im_h <= im_w
and im_h == size):
return clip
new_h, new_w = get_resize_sizes(im_h, im_w, size)
size = (new_w, new_h)
else:
size = size[1], size[0]
if interpolation == 'bilinear':
pil_inter = PIL.Image.BILINEAR
else:
pil_inter = PIL.Image.NEAREST
scaled = [img.resize(size, pil_inter) for img in clip]
else:
raise TypeError('Expected numpy.ndarray or PIL.Image' +
'but got list of {0}'.format(type(clip[0])))
return scaled
def _is_tensor_clip(clip):
return torch.is_tensor(clip) and clip.ndimension() == 4
def get_resize_sizes(im_h, im_w, size):
if im_w < im_h:
ow = size
oh = int(size * im_h / im_w)
else:
oh = size
ow = int(size * im_w / im_h)
return oh, ow
def normalize(clip, mean, std, inplace=False):
if not _is_tensor_clip(clip):
raise TypeError('tensor is not a torch clip.')
if not inplace:
clip = clip.clone()
dtype = clip.dtype
mean = torch.as_tensor(mean, dtype=dtype, device=clip.device)
std = torch.as_tensor(std, dtype=dtype, device=clip.device)
clip.sub_(mean[:, None, None, None]).div_(std[:, None, None, None])
return clip
class Resize(object):
"""Resizes a list of (H x W x C) numpy.ndarray to the final size
The larger the original image is, the more times it takes to
interpolate
Args:
interpolation (str): Can be one of 'nearest', 'bilinear'
defaults to nearest
size (tuple): (widht, height)
"""
def __init__(self, size, interpolation='nearest'):
self.size = size
self.interpolation = interpolation
def __call__(self, clip):
resized = resize_clip(
clip, self.size, interpolation=self.interpolation)
return resized
class Compose(object):
"""Composes several transforms
Args:
transforms (list of ``Transform`` objects): list of transforms
to compose
"""
def __init__(self, transforms):
self.transforms = transforms
def __call__(self, clip):
for t in self.transforms:
clip = t(clip)
return clip
def convert_img(img):
"""Converts (H, W, C) numpy.ndarray to (C, W, H) format"""
if len(img.shape) == 3:
img = img.transpose(2, 0, 1)
if len(img.shape) == 2:
img = np.expand_dims(img, 0)
return img
class ClipToTensor(object):
"""Convert a list of m (H x W x C) numpy.ndarrays in the range [0, 255]
to a torch.FloatTensor of shape (C x m x H x W) in the range [0, 1.0]
"""
def __init__(self, channel_nb=3, div_255=True, numpy=False):
self.channel_nb = channel_nb
self.div_255 = div_255
self.numpy = numpy
def __call__(self, clip):
"""
Args: clip (list of numpy.ndarray): clip (list of images)
to be converted to tensor.
"""
# Retrieve shape
if isinstance(clip[0], np.ndarray):
h, w, ch = clip[0].shape
assert ch == self.channel_nb, "Got {0} instead of 3 channels".format(ch)
elif isinstance(clip[0], Image.Image):
w, h = clip[0].size
else:
raise TypeError(
"Expected numpy.ndarray or PIL.Image\
but got list of {0}".format(
type(clip[0])
)
)
np_clip = np.zeros([self.channel_nb, len(clip), int(h), int(w)])
# Convert
for img_idx, img in enumerate(clip):
if isinstance(img, np.ndarray):
pass
elif isinstance(img, Image.Image):
img = np.array(img, copy=False)
else:
raise TypeError(
"Expected numpy.ndarray or PIL.Image\
but got list of {0}".format(
type(clip[0])
)
)
img = convert_img(img)
np_clip[:, img_idx, :, :] = img
if self.numpy:
if self.div_255:
np_clip = np_clip / 255.0
return np_clip
else:
tensor_clip = torch.from_numpy(np_clip)
if not isinstance(tensor_clip, torch.FloatTensor):
tensor_clip = tensor_clip.float()
if self.div_255:
tensor_clip = torch.div(tensor_clip, 255)
return tensor_clip
class VisionTowerConfig(PretrainedConfig):
model_type = "vision_tower"
def __init__(self, vision_tower_name: str = None, **kwargs):
super().__init__()
self.vision_tower_name = vision_tower_name
class ProcessorWrapper:
def __init__(self, transform=None, processor=None, height=378, width=378, frames_per_clip=1,
image_mean=[0.48145466, 0.4578275, 0.40821073]):
assert transform is not None or processor is not None, "ERROR: you did not define both `transform` and `processor`! You must define either transform or processor"
assert transform is None or processor is None, "ERROR: you did defined both `transform` and `processor`! You must define only one of: transform or processor"
self._size = {
"height": height,
"width": width,
"frames_per_clip": frames_per_clip
}
self._transforms = transform
self._processor = processor
self.image_mean = image_mean
@property
def size(self):
return self._size
def preprocess(self, image, return_tensors='pt'):
# Ensure image is a PIL Image
output = {}
if self._transforms is not None:
output['pixel_values'] = [self._transforms(image)]
else:
output = self._processor(image, return_tensors='pt')
return output
def save_pretrained(self, save_path):
if self._transforms is not None:
transform_dict = transform_to_dict(self._transforms)
transform_dict["image_processor_type"] = "transforms"
with open(os.path.join(save_path, 'preprocessor_config.json'), 'w') as f:
json.dump(transform_dict, f, indent=4)
else:
self._processor.save_pretrained(save_path)
return
class VisionTower(PreTrainedModel):
config_class = VisionTowerConfig
def __init__(self, model_name_or_path: str, config: PretrainedConfig, vision_config: VisionTowerConfig = None):
super().__init__(vision_config)
self.vision_tower_name = model_name_or_path
self.vision_config = vision_config
self.select_layer = getattr(config, "mm_vision_select_layer", -2)
self.select_feature = getattr(config, "mm_vision_select_feature", "patch")
self.encode_batch_size = getattr(config, "encode_batch_size", 0) // 2
self.num_encode_batch = getattr(config, "num_encode_batch", 0) // 2
self.temporal_tubelet_size = getattr(vision_config, "tubelet_size", 1)
def feature_select(self, image_features):
if self.select_layer is not None:
image_features = image_features.hidden_states[self.select_layer]
if self.select_feature == "patch":
image_features = image_features[:, 1:]
elif self.select_feature == "cls_patch":
image_features = image_features
else:
raise ValueError(f"Unexpected select feature: {self.select_feature}")
return image_features
def vision_tower_forward(self, image):
image_feature = self.vision_tower(image, output_hidden_states=True)
return image_feature
def _forward(self, images, out_T=1):
if type(images) is list:
image_features = []
for image in images:
image_feature = self.vision_tower_forward(image.to(device=self.device, dtype=self.dtype).unsqueeze(0))
image_feature = self.feature_select(image_feature).to(image.dtype)
image_feature = image_features.reshape(image_feature.shape[0], self.W, self.H, self.D)
image_features.append(image_feature)
else:
original_shape = images.shape
if len(original_shape) == 5 and self.T == 1:
# downsample temporally if needed, and reshape from (B, T, C, W, H) to (B*T, C, W, H).
images = images[:, ::original_shape[1] // out_T, ...]
original_shape = images.shape
images = images.view(-1, *original_shape[2:])
image_features = self.vision_tower_forward(images.to(device=self.device, dtype=self.dtype))
image_features = self.feature_select(image_features).to(images.dtype)
# Reshape back to (B, T, ...) if necessary
if len(original_shape) == 5 and self.T == 1:
# Assuming the feature dimension does not change, adapt the following line if it does
new_shape = list(image_features.shape[:-2]) + [self.W, self.H, self.hidden_size]
image_features = image_features.reshape(new_shape)
feature_size = image_features.shape[1:]
image_features = image_features.view(original_shape[0], original_shape[1], *feature_size)
else:
image_features = image_features.reshape(image_features.shape[0], self.T, self.W, self.H, self.hidden_size)
return image_features
def forward(self, images):
return self._forward(images)
@property
def dummy_feature(self):
return torch.zeros(1, self.hidden_size, device=self.device, dtype=self.dtype)
@property
def dtype(self):
return self.vision_tower.dtype
@property
def device(self):
return self.vision_tower.device
@property
def num_patches(self):
return (self.config.image_size // self.config.patch_size) ** 2
class InternVideoTower(VisionTower):
def __init__(self, model_name_or_path: str, config: PretrainedConfig, vision_config: PretrainedConfig = None):
if vision_config is None:
vision_config = AutoConfig.from_pretrained(model_name_or_path, trust_remote_code=True)
super().__init__(model_name_or_path, config, vision_config)
self.vision_config = vision_config
normalize = ((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))
print('loading: ', model_name_or_path)
model = AutoModel.from_pretrained(model_name_or_path, trust_remote_code=True)
self.vision_tower = model.to(dtype=eval(config.model_dtype))
transform = Compose([
Resize(self.vision_config.img_size, interpolation='bilinear'),
CenterCrop(size=(self.vision_config.img_size, self.vision_config.img_size)),
ClipToTensor(),
Normalize(mean=normalize[0], std=normalize[1])
])
self.vision_processor = ProcessorWrapper(transform=transform,
height=self.vision_config.img_size,
width=self.vision_config.img_size,
frames_per_clip=self.vision_config.num_frames,
image_mean=normalize[0])
self.W = self.H = vision_config.img_size // vision_config.patch_size
self.T = self.vision_config.num_frames // self.vision_config.tubelet_size
self.num_frames = self.vision_config.num_frames
self.hidden_size = vision_config.d_model
self.vision_select_layer=self.select_layer
self.select_layer=None
def vision_tower_forward(self, video):
if video.shape[-3] < self.num_frames:
video = video.repeat_interleave(self.num_frames, dim=-3)
elif video.shape[-3] > self.num_frames:
video = video[:, :, ::video.shape[-3] // self.num_frames, ...]
video_feature = self.vision_tower(video.to(device=self.device, dtype=self.dtype),
x_vis_return_idx=self.vision_select_layer, x_vis_only=True)
return video_feature
@property
def device(self):
return self.vision_tower.pos_embed.device
class SiglipVisionTower(VisionTower):
def __init__(self, model_name_or_path: str, config: PretrainedConfig, vision_config: PretrainedConfig = None):
if vision_config is None:
vision_config = SiglipVisionConfig.from_pretrained(model_name_or_path)
super().__init__(model_name_or_path, config, vision_config)
self.vision_config = vision_config
self.vision_tower_name = model_name_or_path
self.vision_processor = SiglipImageProcessor.from_pretrained(self.vision_tower_name)
print('loading: ', model_name_or_path)
self.vision_tower = SiglipVisionModel.from_pretrained(self.vision_tower_name)
self.hidden_size = self.vision_config.hidden_size
self.W = self.H = self.vision_config.image_size // self.vision_config.patch_size
self.T = 1
self.select_feature = "cls_patch"
class ApolloVisionTower(PreTrainedModel):
def __init__(self, config, vision_tower_cfg):
super(ApolloVisionTower, self).__init__(config, vision_tower_cfg)
self.model_name_or_path = vision_tower_cfg._name_or_path
self.vision_towers = vision_tower_cfg.vision_towers
self._config = vision_tower_cfg
for vision_tower_name in self.vision_towers:
if 'internvideo' in vision_tower_name.lower():
vision_tower = InternVideoTower(os.path.join(vision_tower_cfg._name_or_path, vision_tower_name), config)
elif 'siglip' in vision_tower_name.lower():
vision_tower = SiglipVisionTower(os.path.join(vision_tower_cfg._name_or_path, vision_tower_name),
config)
setattr(self, vision_tower_name, vision_tower)
self.vision_processor = [getattr(self, vt).vision_processor for vt in self.vision_towers]
self.num_vision_encoders = len(self.vision_towers)
self.W = self.H = max([getattr(self, vt).W for vt in self.vision_towers])
self.T = max([getattr(self, vt).T for vt in self.vision_towers])
self.max_tubelet_size = max(
[getattr(getattr(self, vt).vision_config, 'tubelet_size', 1) for vt in self.vision_towers])
self._hidden_size = sum([getattr(self, vt).hidden_size for vt in self.vision_towers])
self.token_output_shape = (self.T, self.W, self.H)
self.config.num_vision_encoders = self.num_vision_encoders
self.config.vision_towers = self.vision_towers
self.config.token_output_shape = self.token_output_shape
def forward(self, x):
output_features = []
for x_s, vision_tower_name in zip(x, self.vision_towers):
vision_tower = getattr(self, vision_tower_name)
features = vision_tower._forward(x_s, out_T=self.T)
if len(features.shape) != len(self.token_output_shape) + 2:
features = features.unsqueeze(1)
if features.shape[-len(self.token_output_shape) - 1:-1] != self.token_output_shape:
features = features.permute(0, 4, 1, 2, 3).contiguous() # shape [B, D, T, W, H]
features = F.interpolate(features.to(torch.float32), size=self.token_output_shape, mode='trilinear',
align_corners=False).to(features.dtype)
features = features.permute(0, 2, 3, 4, 1).contiguous()
output_features.append(features)
output_features = torch.cat(output_features, dim=-1)
output_features = torch.flatten(output_features, start_dim=1, end_dim=-2)
return output_features
def save_pretrained(
self,
save_directory: Union[str, os.PathLike],
state_dict=None,
**kwargs,
):
if state_dict is None:
state_dict = self.state_dict()
for vision_tower_name in self.vision_towers:
vision_tower = getattr(self, vision_tower_name)
vision_tower_state_dict = OrderedDict(
{k.split(f"vision_tower.{vision_tower_name}.vision_tower.")[-1]: v for k, v in state_dict.items() if
vision_tower_name in k}
)
vision_tower.vision_tower.save_pretrained(os.path.join(save_directory, vision_tower_name),
state_dict=vision_tower_state_dict, **kwargs)
vision_tower.vision_processor.save_pretrained(os.path.join(save_directory, vision_tower_name))
config = self.config
config.configs = {}
config.save_pretrained(save_directory)
@property
def patch_size(self):
return self._patch_size
@property
def image_size(self):
return self._image_size
@property
def hidden_size(self):
return self._hidden_size
|