nithiroj commited on
Commit
334ec31
1 Parent(s): 136aebb

End of training

Browse files
Files changed (1) hide show
  1. README.md +21 -23
README.md CHANGED
@@ -22,7 +22,7 @@ model-index:
22
  metrics:
23
  - name: Accuracy
24
  type: accuracy
25
- value: 0.83
26
  ---
27
 
28
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -32,8 +32,8 @@ should probably proofread and complete it, then remove this comment. -->
32
 
33
  This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
34
  It achieves the following results on the evaluation set:
35
- - Loss: 0.7984
36
- - Accuracy: 0.83
37
 
38
  ## Model description
39
 
@@ -53,11 +53,9 @@ More information needed
53
 
54
  The following hyperparameters were used during training:
55
  - learning_rate: 5e-05
56
- - train_batch_size: 4
57
- - eval_batch_size: 4
58
  - seed: 42
59
- - gradient_accumulation_steps: 2
60
- - total_train_batch_size: 8
61
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
62
  - lr_scheduler_type: linear
63
  - lr_scheduler_warmup_ratio: 0.1
@@ -67,26 +65,26 @@ The following hyperparameters were used during training:
67
 
68
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
69
  |:-------------:|:-----:|:----:|:---------------:|:--------:|
70
- | 2.1366 | 1.0 | 112 | 2.0054 | 0.29 |
71
- | 1.4511 | 2.0 | 225 | 1.3306 | 0.63 |
72
- | 0.941 | 3.0 | 337 | 0.9689 | 0.7 |
73
- | 0.7428 | 4.0 | 450 | 0.9399 | 0.69 |
74
- | 0.4607 | 5.0 | 562 | 0.8357 | 0.73 |
75
- | 0.3398 | 6.0 | 675 | 0.7089 | 0.81 |
76
- | 0.2055 | 7.0 | 787 | 0.7338 | 0.81 |
77
- | 0.1662 | 8.0 | 900 | 0.7718 | 0.81 |
78
- | 0.0939 | 9.0 | 1012 | 0.6441 | 0.85 |
79
- | 0.028 | 10.0 | 1125 | 0.7501 | 0.83 |
80
- | 0.0144 | 11.0 | 1237 | 0.8078 | 0.82 |
81
- | 0.01 | 12.0 | 1350 | 0.7597 | 0.83 |
82
- | 0.0095 | 13.0 | 1462 | 0.7818 | 0.83 |
83
- | 0.0092 | 14.0 | 1575 | 0.7901 | 0.83 |
84
- | 0.0078 | 14.93 | 1680 | 0.7984 | 0.83 |
85
 
86
 
87
  ### Framework versions
88
 
89
  - Transformers 4.32.1
90
- - Pytorch 2.0.1+cu118
91
  - Datasets 2.14.4
92
  - Tokenizers 0.13.3
 
22
  metrics:
23
  - name: Accuracy
24
  type: accuracy
25
+ value: 0.9
26
  ---
27
 
28
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
32
 
33
  This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
34
  It achieves the following results on the evaluation set:
35
+ - Loss: 0.5825
36
+ - Accuracy: 0.9
37
 
38
  ## Model description
39
 
 
53
 
54
  The following hyperparameters were used during training:
55
  - learning_rate: 5e-05
56
+ - train_batch_size: 8
57
+ - eval_batch_size: 8
58
  - seed: 42
 
 
59
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
60
  - lr_scheduler_type: linear
61
  - lr_scheduler_warmup_ratio: 0.1
 
65
 
66
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
67
  |:-------------:|:-----:|:----:|:---------------:|:--------:|
68
+ | 2.1105 | 1.0 | 113 | 1.9598 | 0.46 |
69
+ | 1.4314 | 2.0 | 226 | 1.2930 | 0.66 |
70
+ | 1.0984 | 3.0 | 339 | 0.9178 | 0.78 |
71
+ | 0.8948 | 4.0 | 452 | 0.8796 | 0.7 |
72
+ | 0.5238 | 5.0 | 565 | 0.6836 | 0.79 |
73
+ | 0.323 | 6.0 | 678 | 0.6542 | 0.77 |
74
+ | 0.432 | 7.0 | 791 | 0.5248 | 0.86 |
75
+ | 0.1875 | 8.0 | 904 | 0.4550 | 0.88 |
76
+ | 0.1141 | 9.0 | 1017 | 0.4728 | 0.89 |
77
+ | 0.0841 | 10.0 | 1130 | 0.5757 | 0.85 |
78
+ | 0.0147 | 11.0 | 1243 | 0.5412 | 0.88 |
79
+ | 0.1028 | 12.0 | 1356 | 0.5960 | 0.85 |
80
+ | 0.0107 | 13.0 | 1469 | 0.5774 | 0.88 |
81
+ | 0.0087 | 14.0 | 1582 | 0.5779 | 0.89 |
82
+ | 0.0085 | 15.0 | 1695 | 0.5825 | 0.9 |
83
 
84
 
85
  ### Framework versions
86
 
87
  - Transformers 4.32.1
88
+ - Pytorch 2.0.0
89
  - Datasets 2.14.4
90
  - Tokenizers 0.13.3