End of training
Browse files
README.md
CHANGED
@@ -22,7 +22,7 @@ model-index:
|
|
22 |
metrics:
|
23 |
- name: Accuracy
|
24 |
type: accuracy
|
25 |
-
value: 0.
|
26 |
---
|
27 |
|
28 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -32,8 +32,8 @@ should probably proofread and complete it, then remove this comment. -->
|
|
32 |
|
33 |
This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
|
34 |
It achieves the following results on the evaluation set:
|
35 |
-
- Loss: 0.
|
36 |
-
- Accuracy: 0.
|
37 |
|
38 |
## Model description
|
39 |
|
@@ -53,11 +53,9 @@ More information needed
|
|
53 |
|
54 |
The following hyperparameters were used during training:
|
55 |
- learning_rate: 5e-05
|
56 |
-
- train_batch_size:
|
57 |
-
- eval_batch_size:
|
58 |
- seed: 42
|
59 |
-
- gradient_accumulation_steps: 2
|
60 |
-
- total_train_batch_size: 8
|
61 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
62 |
- lr_scheduler_type: linear
|
63 |
- lr_scheduler_warmup_ratio: 0.1
|
@@ -67,26 +65,26 @@ The following hyperparameters were used during training:
|
|
67 |
|
68 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
69 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
70 |
-
| 2.
|
71 |
-
| 1.
|
72 |
-
|
|
73 |
-
| 0.
|
74 |
-
| 0.
|
75 |
-
| 0.
|
76 |
-
| 0.
|
77 |
-
| 0.
|
78 |
-
| 0.
|
79 |
-
| 0.
|
80 |
-
| 0.
|
81 |
-
| 0.
|
82 |
-
| 0.
|
83 |
-
| 0.
|
84 |
-
| 0.
|
85 |
|
86 |
|
87 |
### Framework versions
|
88 |
|
89 |
- Transformers 4.32.1
|
90 |
-
- Pytorch 2.0.
|
91 |
- Datasets 2.14.4
|
92 |
- Tokenizers 0.13.3
|
|
|
22 |
metrics:
|
23 |
- name: Accuracy
|
24 |
type: accuracy
|
25 |
+
value: 0.9
|
26 |
---
|
27 |
|
28 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
32 |
|
33 |
This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
|
34 |
It achieves the following results on the evaluation set:
|
35 |
+
- Loss: 0.5825
|
36 |
+
- Accuracy: 0.9
|
37 |
|
38 |
## Model description
|
39 |
|
|
|
53 |
|
54 |
The following hyperparameters were used during training:
|
55 |
- learning_rate: 5e-05
|
56 |
+
- train_batch_size: 8
|
57 |
+
- eval_batch_size: 8
|
58 |
- seed: 42
|
|
|
|
|
59 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
60 |
- lr_scheduler_type: linear
|
61 |
- lr_scheduler_warmup_ratio: 0.1
|
|
|
65 |
|
66 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
67 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
68 |
+
| 2.1105 | 1.0 | 113 | 1.9598 | 0.46 |
|
69 |
+
| 1.4314 | 2.0 | 226 | 1.2930 | 0.66 |
|
70 |
+
| 1.0984 | 3.0 | 339 | 0.9178 | 0.78 |
|
71 |
+
| 0.8948 | 4.0 | 452 | 0.8796 | 0.7 |
|
72 |
+
| 0.5238 | 5.0 | 565 | 0.6836 | 0.79 |
|
73 |
+
| 0.323 | 6.0 | 678 | 0.6542 | 0.77 |
|
74 |
+
| 0.432 | 7.0 | 791 | 0.5248 | 0.86 |
|
75 |
+
| 0.1875 | 8.0 | 904 | 0.4550 | 0.88 |
|
76 |
+
| 0.1141 | 9.0 | 1017 | 0.4728 | 0.89 |
|
77 |
+
| 0.0841 | 10.0 | 1130 | 0.5757 | 0.85 |
|
78 |
+
| 0.0147 | 11.0 | 1243 | 0.5412 | 0.88 |
|
79 |
+
| 0.1028 | 12.0 | 1356 | 0.5960 | 0.85 |
|
80 |
+
| 0.0107 | 13.0 | 1469 | 0.5774 | 0.88 |
|
81 |
+
| 0.0087 | 14.0 | 1582 | 0.5779 | 0.89 |
|
82 |
+
| 0.0085 | 15.0 | 1695 | 0.5825 | 0.9 |
|
83 |
|
84 |
|
85 |
### Framework versions
|
86 |
|
87 |
- Transformers 4.32.1
|
88 |
+
- Pytorch 2.0.0
|
89 |
- Datasets 2.14.4
|
90 |
- Tokenizers 0.13.3
|