File size: 3,514 Bytes
7c335fc 992d918 3b768fd 7c335fc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 |
---
base_model:
- tokyotech-llm/Llama-3.1-Swallow-70B-v0.1
- meta-llama/Llama-3.1-70B
- meta-llama/Llama-3.3-70B-Instruct
library_name: transformers
tags:
- mergekit
- merge
- chat
language:
- ja
- en
pipeline_tag: text-generation
license: llama3.3
---
# Llama-3.3-FakeSwallow-70B-Instruct-v0.1
🚨 **Only for research purpose. This model has repetitions output issues.**
This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit).
## Test environment
This model was tested using [text-generation-webui](https://github.com/oobabooga/text-generation-webui/tree/main). I use preset `min_p` with temperature=1 for Generation.
## Usage
This format must be adhered to strictly, as deviations may result in less optimal outputs from the model.
The template used to construct a prompt for the instruct model is specified as follows:
```
<|begin_of_text|><|start_header_id|>system<|end_header_id|>
{SYSTEM_PROMPT}<|eot_id|><|start_header_id|>user<|end_header_id|>
{USER_MESSAGE}<|eot_id|><|start_header_id|>assistant<|end_header_id|>
```
For the "{SYSTEM_PROMPT}" part, We recommend using "あなたは誠実で優秀な日本人のアシスタントです。" or "You are a helpful assistant."
For the "{USER_MESSAGE}" part, We recommend using {instruction}\n{input}
In other words, We recommend the following:
```
<|begin_of_text|><|start_header_id|>system<|end_header_id|>
あなたは誠実で優秀な日本人のアシスタントです。<|eot_id|><|start_header_id|>user<|end_header_id|>
{instruction}
{input}<|eot_id|><|start_header_id|>assistant<|end_header_id|>
```
### Use the instruct model
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nitky/Llama-3.3-FakeSwallow-70B-Instruct-v0.1"
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "Give me a short introduction to large language model."
messages = [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
generated_ids = model.generate(
**model_inputs,
max_new_tokens=512
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
```
## Merge Details
### Merge Method
This model was merged using the [task arithmetic](https://arxiv.org/abs/2212.04089) merge method using [meta-llama/Llama-3.1-70B](https://huggingface.co/meta-llama/Llama-3.1-70B) as a base.
### Models Merged
The following models were included in the merge:
* [tokyotech-llm/Llama-3.1-Swallow-70B-v0.1](https://huggingface.co/tokyotech-llm/Llama-3.1-Swallow-70B-v0.1)
* [meta-llama/Llama-3.3-70B-Instruct](https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct)
### Configuration
The following YAML configuration was used to produce this model:
```yaml
merge_method: task_arithmetic
base_model: meta-llama/Llama-3.1-70B
models:
- model: tokyotech-llm/Llama-3.1-Swallow-70B-v0.1
parameters:
weight: 1.0
- model: meta-llama/Llama-3.3-70B-Instruct
parameters:
weight: 0.8
dtype: bfloat16
name: Llama-3.3-FakeSwallow-70B-Instruct-v0.1
```
|