update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,141 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: cc-by-nc-sa-4.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
model-index:
|
6 |
+
- name: gpt_trinity_2_4_3e-5_lp5_nb5
|
7 |
+
results: []
|
8 |
+
---
|
9 |
+
|
10 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
11 |
+
should probably proofread and complete it, then remove this comment. -->
|
12 |
+
|
13 |
+
# gpt_trinity_2_4_3e-5_lp5_nb5
|
14 |
+
|
15 |
+
This model is a fine-tuned version of [skt/kogpt2-base-v2](https://huggingface.co/skt/kogpt2-base-v2) on an unknown dataset.
|
16 |
+
It achieves the following results on the evaluation set:
|
17 |
+
- Loss: 4.0291
|
18 |
+
|
19 |
+
## Model description
|
20 |
+
|
21 |
+
More information needed
|
22 |
+
|
23 |
+
## Intended uses & limitations
|
24 |
+
|
25 |
+
More information needed
|
26 |
+
|
27 |
+
## Training and evaluation data
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Training procedure
|
32 |
+
|
33 |
+
### Training hyperparameters
|
34 |
+
|
35 |
+
The following hyperparameters were used during training:
|
36 |
+
- learning_rate: 3e-05
|
37 |
+
- train_batch_size: 2
|
38 |
+
- eval_batch_size: 2
|
39 |
+
- seed: 42
|
40 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
41 |
+
- lr_scheduler_type: linear
|
42 |
+
- lr_scheduler_warmup_ratio: 0.1
|
43 |
+
- num_epochs: 4.0
|
44 |
+
- mixed_precision_training: Native AMP
|
45 |
+
|
46 |
+
### Training results
|
47 |
+
|
48 |
+
| Training Loss | Epoch | Step | Validation Loss |
|
49 |
+
|:-------------:|:-----:|:-----:|:---------------:|
|
50 |
+
| 3.5765 | 0.05 | 1000 | 4.1247 |
|
51 |
+
| 3.19 | 0.09 | 2000 | 4.0578 |
|
52 |
+
| 3.1177 | 0.14 | 3000 | 4.0708 |
|
53 |
+
| 3.1116 | 0.19 | 4000 | 4.0654 |
|
54 |
+
| 3.0777 | 0.24 | 5000 | 4.0857 |
|
55 |
+
| 3.1105 | 0.28 | 6000 | 4.1127 |
|
56 |
+
| 3.1018 | 0.33 | 7000 | 4.1410 |
|
57 |
+
| 3.0728 | 0.38 | 8000 | 4.1834 |
|
58 |
+
| 3.1248 | 0.42 | 9000 | 4.2058 |
|
59 |
+
| 3.1035 | 0.47 | 10000 | 4.2048 |
|
60 |
+
| 3.0943 | 0.52 | 11000 | 4.1892 |
|
61 |
+
| 3.0724 | 0.57 | 12000 | 4.2063 |
|
62 |
+
| 3.0517 | 0.61 | 13000 | 4.1923 |
|
63 |
+
| 3.0372 | 0.66 | 14000 | 4.2112 |
|
64 |
+
| 3.0235 | 0.71 | 15000 | 4.2043 |
|
65 |
+
| 3.0329 | 0.76 | 16000 | 4.1630 |
|
66 |
+
| 3.0171 | 0.8 | 17000 | 4.1631 |
|
67 |
+
| 2.9997 | 0.85 | 18000 | 4.1563 |
|
68 |
+
| 2.9913 | 0.9 | 19000 | 4.1616 |
|
69 |
+
| 2.9579 | 0.94 | 20000 | 4.1494 |
|
70 |
+
| 2.9576 | 0.99 | 21000 | 4.1367 |
|
71 |
+
| 2.7461 | 1.04 | 22000 | 4.1593 |
|
72 |
+
| 2.7637 | 1.09 | 23000 | 4.1453 |
|
73 |
+
| 2.741 | 1.13 | 24000 | 4.1624 |
|
74 |
+
| 2.7514 | 1.18 | 25000 | 4.1357 |
|
75 |
+
| 2.755 | 1.23 | 26000 | 4.1524 |
|
76 |
+
| 2.7365 | 1.27 | 27000 | 4.1399 |
|
77 |
+
| 2.7356 | 1.32 | 28000 | 4.1285 |
|
78 |
+
| 2.7386 | 1.37 | 29000 | 4.1286 |
|
79 |
+
| 2.7489 | 1.42 | 30000 | 4.1231 |
|
80 |
+
| 2.7518 | 1.46 | 31000 | 4.1104 |
|
81 |
+
| 2.7317 | 1.51 | 32000 | 4.1202 |
|
82 |
+
| 2.7378 | 1.56 | 33000 | 4.1132 |
|
83 |
+
| 2.7309 | 1.6 | 34000 | 4.1047 |
|
84 |
+
| 2.7791 | 1.65 | 35000 | 4.0976 |
|
85 |
+
| 2.7427 | 1.7 | 36000 | 4.0874 |
|
86 |
+
| 2.7184 | 1.75 | 37000 | 4.0953 |
|
87 |
+
| 2.7107 | 1.79 | 38000 | 4.0963 |
|
88 |
+
| 2.7122 | 1.84 | 39000 | 4.0841 |
|
89 |
+
| 2.7172 | 1.89 | 40000 | 4.0852 |
|
90 |
+
| 2.7126 | 1.94 | 41000 | 4.0632 |
|
91 |
+
| 2.7063 | 1.98 | 42000 | 4.0643 |
|
92 |
+
| 2.5311 | 2.03 | 43000 | 4.0848 |
|
93 |
+
| 2.4496 | 2.08 | 44000 | 4.0943 |
|
94 |
+
| 2.4597 | 2.12 | 45000 | 4.0799 |
|
95 |
+
| 2.4472 | 2.17 | 46000 | 4.0802 |
|
96 |
+
| 2.4628 | 2.22 | 47000 | 4.0880 |
|
97 |
+
| 2.4508 | 2.27 | 48000 | 4.0791 |
|
98 |
+
| 2.4743 | 2.31 | 49000 | 4.0765 |
|
99 |
+
| 2.4692 | 2.36 | 50000 | 4.0739 |
|
100 |
+
| 2.4651 | 2.41 | 51000 | 4.0690 |
|
101 |
+
| 2.4885 | 2.45 | 52000 | 4.0723 |
|
102 |
+
| 2.5023 | 2.5 | 53000 | 4.0675 |
|
103 |
+
| 2.4651 | 2.55 | 54000 | 4.0649 |
|
104 |
+
| 2.4774 | 2.6 | 55000 | 4.0695 |
|
105 |
+
| 2.4717 | 2.64 | 56000 | 4.0559 |
|
106 |
+
| 2.4856 | 2.69 | 57000 | 4.0512 |
|
107 |
+
| 2.4572 | 2.74 | 58000 | 4.0473 |
|
108 |
+
| 2.486 | 2.79 | 59000 | 4.0438 |
|
109 |
+
| 2.449 | 2.83 | 60000 | 4.0385 |
|
110 |
+
| 2.456 | 2.88 | 61000 | 4.0355 |
|
111 |
+
| 2.4802 | 2.93 | 62000 | 4.0378 |
|
112 |
+
| 2.4635 | 2.97 | 63000 | 4.0308 |
|
113 |
+
| 2.3742 | 3.02 | 64000 | 4.0488 |
|
114 |
+
| 2.2371 | 3.07 | 65000 | 4.0579 |
|
115 |
+
| 2.2496 | 3.12 | 66000 | 4.0630 |
|
116 |
+
| 2.2758 | 3.16 | 67000 | 4.0516 |
|
117 |
+
| 2.2489 | 3.21 | 68000 | 4.0585 |
|
118 |
+
| 2.2374 | 3.26 | 69000 | 4.0715 |
|
119 |
+
| 2.2862 | 3.3 | 70000 | 4.0507 |
|
120 |
+
| 2.2502 | 3.35 | 71000 | 4.0512 |
|
121 |
+
| 2.238 | 3.4 | 72000 | 4.0545 |
|
122 |
+
| 2.2407 | 3.45 | 73000 | 4.0459 |
|
123 |
+
| 2.2529 | 3.49 | 74000 | 4.0452 |
|
124 |
+
| 2.2453 | 3.54 | 75000 | 4.0459 |
|
125 |
+
| 2.2314 | 3.59 | 76000 | 4.0416 |
|
126 |
+
| 2.2408 | 3.63 | 77000 | 4.0379 |
|
127 |
+
| 2.2497 | 3.68 | 78000 | 4.0348 |
|
128 |
+
| 2.2475 | 3.73 | 79000 | 4.0374 |
|
129 |
+
| 2.2376 | 3.78 | 80000 | 4.0319 |
|
130 |
+
| 2.244 | 3.82 | 81000 | 4.0331 |
|
131 |
+
| 2.2611 | 3.87 | 82000 | 4.0306 |
|
132 |
+
| 2.237 | 3.92 | 83000 | 4.0301 |
|
133 |
+
| 2.2337 | 3.97 | 84000 | 4.0291 |
|
134 |
+
|
135 |
+
|
136 |
+
### Framework versions
|
137 |
+
|
138 |
+
- Transformers 4.25.1
|
139 |
+
- Pytorch 1.9.0+cu102
|
140 |
+
- Datasets 2.8.0
|
141 |
+
- Tokenizers 0.13.2
|