res_nw_lev_aragpt2-large
This model is a fine-tuned version of aubmindlab/aragpt2-large on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.0510
- Bleu: 0.1964
- Rouge1: 0.5391
- Rouge2: 0.3196
- Rougel: 0.5372
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 20.0
Training results
Training Loss | Epoch | Step | Validation Loss | Bleu | Rouge1 | Rouge2 | Rougel |
---|---|---|---|---|---|---|---|
0.0936 | 1.0 | 10123 | 0.0602 | 0.0756 | 0.4154 | 0.1873 | 0.4125 |
0.0531 | 2.0 | 20246 | 0.0549 | 0.1086 | 0.4729 | 0.2428 | 0.4706 |
0.043 | 3.0 | 30369 | 0.0522 | 0.1457 | 0.5068 | 0.2846 | 0.5043 |
0.0347 | 4.0 | 40492 | 0.0510 | 0.1964 | 0.5391 | 0.3196 | 0.5372 |
0.029 | 5.0 | 50615 | 0.0511 | 0.2436 | 0.5627 | 0.3532 | 0.5608 |
0.0247 | 6.0 | 60738 | 0.0522 | 0.2849 | 0.5778 | 0.3798 | 0.5761 |
0.0218 | 7.0 | 70861 | 0.0531 | 0.3156 | 0.5943 | 0.4031 | 0.5925 |
0.0195 | 8.0 | 80984 | 0.0551 | 0.3369 | 0.5990 | 0.4135 | 0.5972 |
0.0179 | 9.0 | 91107 | 0.0563 | 0.3488 | 0.6067 | 0.4231 | 0.6048 |
Framework versions
- Transformers 4.45.0.dev0
- Pytorch 2.3.1+cu121
- Datasets 2.19.2
- Tokenizers 0.19.1
- Downloads last month
- 3
Model tree for nlparabic/res_nw_lev_aragpt2-large
Base model
aubmindlab/aragpt2-large