Update README.md
Browse files
README.md
CHANGED
@@ -1,52 +1,116 @@
|
|
1 |
---
|
2 |
-
|
3 |
-
language:
|
4 |
-
|
5 |
-
-
|
6 |
-
|
7 |
-
-
|
8 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
---
|
10 |
|
11 |
-
#
|
12 |
|
13 |
-
-
|
14 |
-
- Model ID: 1147942216
|
15 |
-
- CO2 Emissions (in grams): 652.3729662301374
|
16 |
|
17 |
-
|
18 |
|
19 |
-
|
20 |
-
- Accuracy: 0.8882102517882141
|
21 |
-
- Macro F1: 0.7681095738330185
|
22 |
-
- Micro F1: 0.8882102517882141
|
23 |
-
- Weighted F1: 0.8873062298114072
|
24 |
-
- Macro Precision: 0.8125021386404774
|
25 |
-
- Micro Precision: 0.8882102517882141
|
26 |
-
- Weighted Precision: 0.8875709606885154
|
27 |
-
- Macro Recall: 0.7429489567097202
|
28 |
-
- Micro Recall: 0.8882102517882141
|
29 |
-
- Weighted Recall: 0.8882102517882141
|
30 |
-
|
31 |
-
|
32 |
-
## Usage
|
33 |
-
|
34 |
-
You can use cURL to access this model:
|
35 |
-
|
36 |
-
```
|
37 |
-
$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/EXOP/autotrain-exop-msc-flat-categories-multilingual-1147942216
|
38 |
-
```
|
39 |
-
|
40 |
-
Or Python API:
|
41 |
-
|
42 |
-
```
|
43 |
-
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
44 |
-
|
45 |
-
model = AutoModelForSequenceClassification.from_pretrained("EXOP/autotrain-exop-msc-flat-categories-multilingual-1147942216", use_auth_token=True)
|
46 |
-
|
47 |
-
tokenizer = AutoTokenizer.from_pretrained("EXOP/autotrain-exop-msc-flat-categories-multilingual-1147942216", use_auth_token=True)
|
48 |
-
|
49 |
-
inputs = tokenizer("I love AutoTrain", return_tensors="pt")
|
50 |
-
|
51 |
-
outputs = model(**inputs)
|
52 |
-
```
|
|
|
1 |
---
|
2 |
+
license: apache-2.0
|
3 |
+
language:
|
4 |
+
- multilingual
|
5 |
+
- af
|
6 |
+
- sq
|
7 |
+
- ar
|
8 |
+
- an
|
9 |
+
- hy
|
10 |
+
- ast
|
11 |
+
- az
|
12 |
+
- ba
|
13 |
+
- eu
|
14 |
+
- bar
|
15 |
+
- be
|
16 |
+
- bn
|
17 |
+
- inc
|
18 |
+
- bs
|
19 |
+
- br
|
20 |
+
- bg
|
21 |
+
- my
|
22 |
+
- ca
|
23 |
+
- ceb
|
24 |
+
- ce
|
25 |
+
- zh
|
26 |
+
- cv
|
27 |
+
- hr
|
28 |
+
- cs
|
29 |
+
- da
|
30 |
+
- nl
|
31 |
+
- en
|
32 |
+
- et
|
33 |
+
- fi
|
34 |
+
- fr
|
35 |
+
- gl
|
36 |
+
- ka
|
37 |
+
- de
|
38 |
+
- el
|
39 |
+
- gu
|
40 |
+
- ht
|
41 |
+
- he
|
42 |
+
- hi
|
43 |
+
- hu
|
44 |
+
- is
|
45 |
+
- io
|
46 |
+
- id
|
47 |
+
- ga
|
48 |
+
- it
|
49 |
+
- ja
|
50 |
+
- jv
|
51 |
+
- kn
|
52 |
+
- kk
|
53 |
+
- ky
|
54 |
+
- ko
|
55 |
+
- la
|
56 |
+
- lv
|
57 |
+
- lt
|
58 |
+
- roa
|
59 |
+
- nds
|
60 |
+
- lm
|
61 |
+
- mk
|
62 |
+
- mg
|
63 |
+
- ms
|
64 |
+
- ml
|
65 |
+
- mr
|
66 |
+
- min
|
67 |
+
- ne
|
68 |
+
- new
|
69 |
+
- nb
|
70 |
+
- nn
|
71 |
+
- oc
|
72 |
+
- fa
|
73 |
+
- pms
|
74 |
+
- pl
|
75 |
+
- pt
|
76 |
+
- pa
|
77 |
+
- ro
|
78 |
+
- ru
|
79 |
+
- sco
|
80 |
+
- sr
|
81 |
+
- hr
|
82 |
+
- scn
|
83 |
+
- sk
|
84 |
+
- sl
|
85 |
+
- aze
|
86 |
+
- es
|
87 |
+
- su
|
88 |
+
- sw
|
89 |
+
- sv
|
90 |
+
- tl
|
91 |
+
- tg
|
92 |
+
- ta
|
93 |
+
- tt
|
94 |
+
- te
|
95 |
+
- tr
|
96 |
+
- uk
|
97 |
+
- ud
|
98 |
+
- uz
|
99 |
+
- vi
|
100 |
+
- vo
|
101 |
+
- war
|
102 |
+
- cy
|
103 |
+
- fry
|
104 |
+
- pnb
|
105 |
+
- yo
|
106 |
+
tags:
|
107 |
+
- text-classification
|
108 |
---
|
109 |
|
110 |
+
# bert-multilingual-uncased-intelligence-headlines
|
111 |
|
112 |
+
This a bert-base-multilingual-uncased model fine-tuned to perform classification of news headlines according to an intelligence taxonomy.
|
|
|
|
|
113 |
|
114 |
+
### Authors
|
115 |
|
116 |
+
The [NLP Odyssey](https://github.com/nlpodyssey/) Authors
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|